Этапы развития центральной нервной системы. Основные этапы эволюции ЦНС

  • 1)Дорзальная индукция или Первичная нейруляция - период 3-4 недели гестации;
  • 2)Вентральная индукция - период 5-6 недели гестации;
  • 3)Нейрональная пролиферация - период 2-4 месяца гестации;
  • 4)Миграция - период 3-5 месяца гестации;
  • 5)Организация - период 6-9 месяца развития плода;
  • 6)Миелинизация - занимает период от момента рождения и в последующем периоде постнатальной адаптации.

В первом триместре беременности протекают такие этапы развития нервной системы плода:

Дорзальная индукция или Первичная нейруляция - в связи с индивидуальными особенностями развития может варьировать по времени, но всегда придерживается 3-4 неделе (18-27 день после зачатия) гестации. В этот период происходит образование нервной пластинки, которая после смыкания ее краев превращается в нервную трубку (4-7 неделя гестации).

Вентральная индукция - этот этап формирования нервной системы плода достигает своего пика на 5-6 неделе гестации. В этот период у нервной трубки появляются 3 расширенных полости (на переднем ее конце), из которых после формируются:

из 1-й (краниальной полости) - головной мозг;

из 2-й и 3-й полости - спинной мозг.

Вследствие деления на три пузыря, нервная система развивается дальше и зачаток головного мозга плода из трех пузырей превращается в пять путем деления.

Из переднего мозга образуется - конечный мозг и межуточный мозг.

Из заднего мозгового пузыря - закладка мозжечка и продолговатого мозга.

В первый триместр беременности также проходит частично нейрональная пролиферация.

Спинной мозг развивается быстрее, чем головной, и, следовательно, функционировать начинает также быстрее, отчего играет более важную роль на начальных этапах развития плода.

Но в первом триместре беременности особое внимание заслуживает процесс развития вестибулярного анализатора. Он является высокоспециализированным анализатором, который отвечает у плода за восприятие перемещения в пространстве и ощущение изменения положения. Этот анализатор формируется уже на 7 неделе внутриутробного развития (раньше других анализаторов!), а к 12-той неделе к нему уже подходят нервные волокна. Миелинизация нервных волокон начинается к моменту появления у плода первых движений - на 14 - неделе гестации. Но для проведения импульсов от вестибулярных ядер к двигательным клеткам передних рогов спинного мозга необходимо быть миелинизированным вестибуло - спинальному тракту. Его миелинизация происходит через 1-2 недели (15 - 16 неделя гестации).

Поэтому, благодаря раннему формированию вестибулярного рефлекса, при перемещении беременной женщины в пространстве плод перемещается в полости матки. Вместе с этим, перемещение плода в пространстве является «раздражающим» фактором для вестибулярного рецептора, который посылает импульсы для дальнейшего развития нервной системы плода.

Нарушения развития плода от воздействия различных факторов в этот период ведет к нарушениям вестибулярного аппарата у новорожденного ребенка.

До 2-го месяца гестации плод имеет гладкую поверхность головного мозга, покрытую эпендимным слоем, состоящим из медуллобластов. Ко 2 - му месяцу внутриутробного развития начинает формироваться кора головного мозга путем миграции нейробластов в вышележащий краевой слой, и, таким образом, формируя закладку серого вещества головного мозга.

Все неблагоприятные факторы воздействия в первый триместр развития нервной системы плода приводят к тяжелым и, в большинстве случаев, необратимым нарушениям функционирования и дальнейшего формирования нервной системы плода.

Второй триместр беременности.

Если в первом триместре беременности происходит основная закладка нервной системы, то во втором триместре происходит ее интенсивное развитие.

Нейрональная пролиферация является основным процессом онтогенеза.

На этом этапе развития возникает физиологическая водянка пузырей головного мозга. Это происходит из-за того, что спинномозговая жидкость, поступая в мозговые пузыри, расширяет их.

К концу 5-го месяца гестации образуются все основные борозды головного мозга, а также появляются отверстия Люшка, через которые спинномозговая жидкость выходит на наружную поверхность мозга и омывает его.

В течение 4 - 5 месяца развития мозга интенсивно развивается мозжечок. Он приобретает характерную ему извилистость, и делиться поперек, образуя свои основные части: переднюю, заднюю и фолликуло-нодулярные доли.

Также во втором триместре беременности проходит этап миграции клеток (5 месяц), в результате которого появляется зональность. Головной мозг плода становится более похож на головной мозг взрослого ребенка.

При воздействии неблагоприятных факторов на плод во второй период беременности, возникают нарушения, которые совместимы с жизнью, так как закладка нервной систему прошла в первом триместре. На этом этапе нарушения связанны с недоразвитием структур мозга.

Третий триместр беременности.

В этот период происходит организация и миелинизация структур головного мозга. Борозды и извилины в своем развитии подходят к завершающему этапу (7 - 8 месяц гестации).

Под этапом организации нервных структур понимают морфологическую дифференцировку и возникновение специфических нейронов. В связи с развитием цитоплазмы клеток и увеличения внутриклеточных органелл, происходит увеличение образования продуктов обмена, которые необходимы для развития нервных структур: белки, ферменты, гликолипиды, медиаторы и др. Параллельно с этими процессами протекает образование аксонов и дендритов для обеспечения синоптических контактов между нейронами.

Миелинизация нервных структур начинается с 4-5 месяца гестации и заканчивается к концу первого, началу второго года жизни ребенка, когда ребенок начинает ходить.

При воздействии неблагоприятных факторов в третьем триместре беременности, а также в течение первого года жизни, когда заканчиваются процессы миелинизации пирамидных путей, серьезных нарушений не возникает. Возможны легкие изменения структуры, которые определяются только при гистологическом исследовании.

Развитие ликвора и кровеносной системы головного и спинного мозга.

В первом триместре беременности (1 - 2 месяц гестации), когда происходит образование пяти мозговых пузырей, происходит образование сосудистых сплетений в полости первого, второго и пятого мозгового пузыря. Эти сплетения начинают секретировать высококонцентрированный ликвор, который является, по сути, питательной средой из-за большого содержания в своем составе белка и гликогена (превышает в 20 раз в отличие от взрослых). Ликвор - в этом периоде является основным источником питательных веществ для развития структур нервной системы.

Пока развитие мозговых структур поддерживает ликвор, на 3 - 4 неделе гестации образуются первые сосуды кровеносной системы, которые расположены в мягко-паутинной оболочке. Изначально содержание кислорода в артериях очень низкое, но в течение с 1 - го по 2 - й месяц внутриутробного развития кровеносная система приобретает более зрелый вид. И на втором месяце гестации кровеносные сосуды начинают врастать в мозговое вещество, образуя кровеносную сеть.

К 5 - му месяцу развития нервной системы появляются передняя, средняя и задняя мозговые артерии, которые соединены между собой анастомозами, и представляют собой завершенную структуру мозга.

Кровоснабжение спинного мозга происходит из большего количества источников, чем у головного мозга. Кровь к спинному мозгу поступает из двух позвоночных артерий, которые разветвляются на три артериальных тракта, которые, в свою очередь, идут вдоль всего спинного мозга, питая его. Передние рога получают большее количество питательных веществ.

Венозная система исключает образование коллатералей и является более изолированной, что способствует быстрому выведению конечных продуктов обмена по центральным венам на поверхность спинного мозга и выведением в венозные сплетения позвоночника.

Особенностью кровоснабжения третьего, четвертого и боковых желудочков у плода является более широкий размер капилляров, которые проходят в этих структурах. Это ведет к замедленному току крови, что способствует более интенсивному питанию.

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синаптическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

Нервная система начинает развиваться на 3-ей неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша происходит утолщение эктодермы. Это формируется нервная пластинка. Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка. Края нервной бороздки смыкаются, формируя нервную трубку. Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в головной мозг

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня - нервные тяжи. В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки, которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слое нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на 2 типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри:передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. В последующем развитии мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-ти пузырная стадия развития мозга

К 4-ой неделе внутриутробного развития формируются теменной и затылочный изгибы, а в течение 5-ой недели - мостовой изгиб. К моменту рождения сохраняется только изгиб мозгового ствола почти под прямым углом в области соединения среднего и промежуточного мозга

В начале поверхность больших полушарий гладкая. На 11-12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. увеличивается площадь коры.

Нейробласты путем миграции образуют ядер, каторые формируют серое вещество спинного мозга, а в стволе мозга - некоторые ядра черепно-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и ветвлении отростков. На мембране нейрона образуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивается и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образуется большее число отростков по сравнению с конечным числом отростков зрелого нейрона. Часть отростков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Несколько позже начинается рост дендритов.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образование клеточных слоев

В формировании корковых слоев большую роль играют так называемые глиальные клетки. По отросткам глиальных клеток происходит миграция нейронов. образуются более поверхностные слои коры. Глиальные клетки принимают также участи в образовании миелиновой оболочки. На созревание мозга оказывали влияния белки и нейропиптиды.

в постанатальном периоде все большую роль приобретают внешние стимулы Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - выросты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше синапсов и тем большее участие принимает нейрон в обработке информации. Развитие стволовых и подкорковых структур, раньше, чем корковых, рост и развитие возбудительных нейронов обгоняет рост и развитие тормозных нейронов


Восточный мистицизм
Гуревич пишет, что мистика - не только свод наивных иллюзий, слепых верований, затемняющих свет разумности, но также древняя и глубокая духовная традиция. Мистика - сложная духовная традиция, в которой соединены разные, порою противоречив...

Цитоскелет
В принципе как трансмембранное, так и латеральное распределение мембранных компонентов может зависеть от их взаимодействия со структурами, находящимися на поверхности мембраны. В ряде случаев такая зависимость была четко выявлена, в частн...

Перенос генетической информации в клетке
Информационные взаимоотношения между ДНК, РНК и белками теперь точно установлены. Репликация, с помощью которой создаются идентичные копии родительской молекулы ДНК, обеспечивает генетическую непрерывность в ряду поколений. Транскрипция Д...

Классификация и строение нервной системы

Значение нервной системы.

ЗНАЧЕНИЕ И РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ

Основное значение нервной системы состоит в обеспечении наилучшего приспособления организма к воздействию внешней среды и осуществлении его реакций как едино­го целого. Раздражение, полученное рецептором, вызывает нервный импульс, который передается в центральную нервную систему (ЦНС), где осуществляется анализ и синтез информации , вследствие чего возни­кает ответная реакция.

Нервная система обеспечивает взаимосвязь между отдельными органами и системами органов (1). Она регулирует физиологические процессы, протекающие во всех клетках, тканях и органах организма человека и животного (2). Для одних органов нерв­ная система обладает пусковым действием (3). В этом случае функция пол­ностью зависит от воздействий нервной системы (например, мышца сокращается вследствие того, что получает импульсы из центральной нервной системы). Для других - лишь изменяет существующий уровень их функционирования (4). (Например, импульс, приходящий к сердцу, изменяет его работу, замедляет или ускоряет, усиливает или ослабляет).

Влияния нервной системы осуществляются очень быстро (нерв­ный импульс распространяется со скоростью 27-100 м/с и более). Адрес воздействия очень точен (направлены к определенным органам) и строго дозирован. Многие процессы обусловлены наличием обратной связи ЦНС с регулируемыми ею органами, которые, посылая афферентные импульсы к центральной нервной системе, сообщают ей о характере полученного воздействия.

Чем сложнее организована и более высокоразвита нервная система, тем сложнее и многообразнее реакции организма, тем совершеннее его приспособление к воздействиям внешней среды.

Нервную систему традиционно по строению делят на два основных отдела: ЦНС и периферическую нервную систему.

К центральной нервной системе относят головной и спинной мозг, к периферической - нервы, отходящие от головного и спин­ного мозга и нервные узлы - ганглии (скопление нервных клеток, расположенных в разных участках тела).

По функциональным свойствам нервную систему делят на со­матическую, или цереброспинальную, и вегетативную.

К соматической нервной системе относят ту часть нервной сис­темы, которая иннервирует опорно-двигательный аппарат и обеспе­чивает чувствительность нашего тела.

К вегетативной нервной системе относят все другие отделы, которые регулируют деятельность внутренних органов (сердце, лег­кие, органы выделения и др.), гладких мышц сосудов и кожи, раз­личных желез и обмен веществ (обладает трофическим влиянием на все органы, в том числе и на скелетную мускулатуру).



Нервная система начинает формироваться на третьей неделе эмбрионального разви­тия из дорсальной части наружного зародышевого листка (эктодер­мы). Сначала образуется нервная пластинка, которая постепенно превращается в желобок с поднятыми краями. Края желобка при­ближаются друг к другу и образуют замкнутую нервную трубку. Из нижнего (хвостового) отдела нервной трубки образуется спин­ной мозг , из остальной части (передней) - все отделы головного мозга: продолговатый мозг, мост и мозжечок, средний мозг, проме­жуточный и большие полушария.

В головном мозге различают по происхождению, структурным особенностям и функциональному значению три отдела: ствол, под­корковый отдел и кору больших полушарий . Мозговой ствол - это образование, расположенное между спинным мозгом и большими полушариями. К нему относят продолговатый, средний и промежу­точный мозг. К подкорковому отделу относят базальные ганглии. Кора больших полушарий является высшим отделом головного мозга.

В процессе развития из переднего отдела нервной трубки обра­зуются три расширения - первичные мозговые пузыри (передний, средний и задний, или ромбовидный). Эту стадию развития голов­ного мозга называют стадией трехпузырного развития (форзац I, А).

У 3-недельного эмбриона намечается, а у 5-недельного хорошо выражено разделение поперечной бороздой переднего и ромбовид­ного пузырей еще на две части, вследствие чего образуется пять мозговых пузырей - стадия пятипузырного развития (форзац I, Б).

Эти пять мозговых пузырей дают начало всем отделам головного мозга. Мозговые пузыри растут неравномерно. Наиболее интенсив­но развивается передний пузырь, который уже на ранней стадии развития разделяется продольной бороздой на правый и левый. На третьем месяце эмбрионального развития сформировано мозолистое тело, которое соединяет правое и левое полушария, а задние отделы переднего пузыря полностью покрывают промежуточный мозг. На пятом месяце внутриутробного развития плода полушария распро­страняются до среднего мозга, а на шестом - полностью покрывают его (цвет. табл. II). К, этому времени все отделы головного мозга хорошо выражены.

4. Нервная ткань и её основные структуры

В состав нервной ткани входят высокоспециализированные нервные клетки, названные ней­ронами, и клетки нейроглии. Последние тесно связаны с нервными клетками и выполняют опорную, секреторную и защитную функции.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА

ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ

После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.

В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.

В течение первых 2 мес. беременности образуется основной (среднемозговой) изгиб головного мозга: передний мозг и промежуточный мозг загибаются вперед и вниз под прямым углом к продольной оси нервной трубки. Позже формируются еще два изгиба: шейный и мостовой. В этот же период первый и третий мозговые пузыри разделяются дополнительными бороздами на вторичные пузыри, при этом появляется 5 мозговых пузырей. Из первого пузыря образуются большие полушария головного мозга, из второго – промежуточный мозг, который в процессе развития дифференцируется на таламус и гипоталамус. Из оставшихся пузырей формируются мозговой ствол и мозжечок. В течение 5–10-й недели развития начинается рост и дифференцировка конечного мозга: образуются кора и подкорковые структуры. На этой стадии развития появляются мозговые оболочки, формируются ганглии нервной периферической вегетативной системы, вещество коры надпочечников. Спинной мозг приобретает окончательное строение.

В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.

Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.

В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.

Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.

Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.

Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.

В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.

Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).

Вопросы

1. Этапы развития центральной нервной системы человека.

2. Периоды развития нервной системы ребенка.

3. Что составляет гематоэнцефалический барьер?

4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?

5. Схема кровоснабжения головного мозга.

Литература

Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.

Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.

Оленев С. Н. Развивающийся мозг. Л., 1979.

Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.

Шаде Дж., Форд П. Основы неврологии. М., 1976.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

Нейробиологический подход к исследованию нервной системы человека В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Основы психофизиологии автора Александров Юрий

Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ Общепризнано, что нервная высшая деятельность человека и животных обеспечивается целым комплексом совместно работающих мозговых структур, каждая из которых вносит в этот процесс свой специфический вклад. Это означает, что нервная

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.

Из книги Антропология и концепции биологии автора

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги автора

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.2. Эволюция нервной системы Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их


Top