Людвиг Больцман: Именные достижения. Больцмана постоянная



План:

    Введение
  • 1 Связь между температурой и энергией
  • 2 Определение энтропии
  • Примечания

Введение

Постоянная Больцмана (k или k B ) - физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

Дж/К .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. Постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако, вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний. В естественной системе единиц Планка естественная единица температуры задаётся так, что постоянная Больцмана равна единице.

Универсальная газовая постоянная определяется как произведение постоянной Больцмана на число Авогадро, R = k N A . Газовая постоянная более удобна, когда число частиц задано в молях.


1. Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла k T / 2 . При комнатной температуре (300 К) эта энергия составляет Дж, или 0,013 эВ. В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в .

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона. В случае молекулярного газа ситуация усложняется, например двухатомный газ уже имеет приблизительно пять степеней свободы.


2. Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k lnZ .

Коэффициент пропорциональности k и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими (Z ) и макроскопическими состояниями (S ), выражает центральную идею статистической механики.


Примечания

  1. 1 2 3 http://physics.nist.gov/cuu/Constants/Table/allascii.txt - physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants - Complete Listing
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 10.07.11 01:04:29
Похожие рефераты:

Постоянная Больцмана, представляющая собой коэффициент, равный k = 1 , 38 · 10 - 23 Д ж К, является частью значительного числа формул в физике. Она получила свое название по имени австрийского физика – одного из основоположников молекулярно-кинетической теории. Сформулируем определение постоянной Больцмана:

Определение 1

Постоянной Больцмана называется физическая постоянная, с помощью которой определяется связь между энергией и температурой.

Не следует путать ее с постоянной Стефана-Больцмана, связанной с излучением энергии абсолютно твердого тела.

Существуют различные методы вычисления данного коэффициента. В рамках этой статьи мы рассмотрим два их них.

Нахождение постоянной Больцмана через уравнение идеального газа

Данная постоянная может быть найдена с помощью уравнения, описывающего состояние идеального газа. Опытным путем можно определить, что нагревание любого газа от T 0 = 273 К до T 1 = 373 К приводит к изменению его давления от p 0 = 1 , 013 · 10 5 П а до p 0 = 1 , 38 · 10 5 П а. Это достаточно простой эксперимент, который может быть проведен даже просто с воздухом. Для измерения температуры при этом нужно использовать термометр, а давления – манометр. При этом важно помнить, что количество молекул в моле любого газа примерно равно 6 · 10 23 , а объем при давлении в 1 а т м равен V = 22 , 4 л. С учетом всех названных параметров можно перейти к вычислению постоянной Больцмана k:

Для этого запишем уравнение дважды, подставив в него параметры состояний.

Зная результат, можем найти значение параметра k:

Нахождение постоянной Больцмана через формулу броуновского движения

Для второго способа вычисления нам также потребуется провести эксперимент. Для него нужно взять небольшое зеркало и подвесить в воздухе с помощью упругой нитки. Допустим, что система зеркало-воздух находится в стабильном состоянии (статическом равновесии). Молекулы воздуха ударяют в зеркало, которое, по сути, ведет себя как броуновская частица. Однако с учетом его подвешенного состояния мы можем наблюдать вращательные колебания вокруг определенной оси, совпадающей с подвесом (вертикально направленной нитью). Теперь направим на поверхность зеркала луч света. Даже при незначительных движениях и поворотах зеркала отражающийся в нем луч будет заметно смещаться. Это дает нам возможность измерить вращательные колебания объекта.

Обозначив модуль кручения как L , момент инерции зеркала по отношению к оси вращения как J , а угол поворота зеркала как φ , можем записать уравнение колебаний следующего вида:

Минус в уравнении связан с направлением момента сил упругости, который стремится вернуть зеркало в равновесное положение. Теперь произведем умножение обеих частей на φ , проинтегрируем результат и получим:

Следующее уравнение является законом сохранения энергии, который будет выполняться для данных колебаний (то есть потенциальная энергия будет переходить в кинетическую и обратно). Мы можем считать эти колебания гармоническими, следовательно:

При выведении одной из формул ранее мы использовали закон равномерного распределения энергии по степеням свободы. Значит, можем записать так:

Как мы уже говорили, угол поворота можно измерить. Так, если температура будет равна приблизительно 290 К, а модуль кручения L ≈ 10 - 15 Н · м; φ ≈ 4 · 10 - 6 , то рассчитать значение нужного нам коэффициента можно так:

Следовательно, зная основы броуновского движения, мы можем найти постоянную Больцмана с помощью измерения макропараметров.

Значение постоянной Больцмана

Значение изучаемого коэффициента состоит в том, что с его помощью можно связать параметры микромира с теми параметрами, что описывают макромир, например, термодинамическую температуру с энергией поступательного движения молекул:

Этот коэффициент входит в уравнения средней энергии молекулы, состояния идеального газа, кинетической теории газа, распределение Больцмана-Максвелла и многие другие. Также постоянная Больцмана необходима для того, чтобы определить энтропию. Она играет важную роль при изучении полупроводников, например, в уравнении, описывающем зависимость электропроводности от температуры.

Пример 1

Условие: вычислите среднюю энергию молекулы газа, состоящего из N -атомных молекул при температуре T , зная, что у молекул возбуждены все степени свободы – вращательные, поступательные, колебательные. Все молекулы считать объемными.

Решение

Энергия равномерно распределяется по степеням свободы на каждую ее степень, значит, на эти степени будет приходиться одинаковая кинетическая энергия. Она будет равна ε i = 1 2 k T . Тогда для вычисления средней энергии мы можем использовать формулу:

ε = i 2 k T , где i = m p o s t + m υ r + 2 m k o l представляет собой сумму поступательных вращательных степеней свободы. Буквой k обозначена постоянная Больцмана.

Переходим к определению количества степеней свободы молекулы:

m p o s t = 3 , m υ r = 3 , значит, m k o l = 3 N - 6 .

i = 6 + 6 N - 12 = 6 N - 6 ; ε = 6 N - 6 2 k T = 3 N - 3 k T .

Ответ: при данных условиях средняя энергия молекулы будет равна ε = 3 N - 3 k T .

Пример 2

Условие: есть смесь двух идеальных газов, плотность которых в нормальных условиях равна p. Определите, какова будет концентрация одного газа в смеси при условии, что мы знаем молярные массы обоих газов μ 1 , μ 2 .

Решение

Сначала вычислим общую массу смеси.

m = ρ V = N 1 m 01 + N 2 m 02 = n 1 V m 01 + n 2 V m 02 → ρ = n 1 m 01 + n 2 m 02 .

Параметр m 01 обозначает массу молекулы одного газа, m 02 – массу молекулы другого, n 2 – концентрацию молекул одного газа, n 2 – концентрацию второго. Плотность смеси равна ρ .

Теперь из данного уравнения выразим концентрацию первого газа:

n 1 = ρ - n 2 m 02 m 01 ; n 2 = n - n 1 → n 1 = ρ - (n - n 1) m 02 m 01 → n 1 = ρ - n m 02 + n 1 m 02 m 01 → n 1 m 01 - n 1 m 02 = ρ - n m 02 → n 1 (m 01 - m 02) = ρ - n m 02 .

p = n k T → n = p k T .

Подставим полученное равнее значение:

n 1 (m 01 - m 02) = ρ - p k T m 02 → n 1 = ρ - p k T m 02 (m 01 - m 02) .

Поскольку молярные массы газов нам известны, мы можем найти массы молекул первого и второго газа:

m 01 = μ 1 N A , m 02 = μ 2 N A .

Также мы знаем, что смесь газов находится в нормальных условиях, т.е. давление равно 1 а т м, а температура 290 К. Значит, мы можем считать задачу решенной.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Согласно закону Стефана – Больцмана плотность интегрального полусферического излучения E 0 зависит только от температуры и изменяется пропорционально четвертой степени абсолютной температуры T :

Стефана – Больцмана постоянная σ 0 – физическая постоянная, входящая в закон, определяющий объемную плотность равновесного теплового излучения абсолютно черного тела:

Исторически закон Стефана-Больцмана был сформулирован раньше закона излучения Планка, из которого он вытекает как следствие. Закон Планка устанавливает зависимость спектральной плотности потока излучения E 0 от длины волны λ и температуры T :

где λ – длина волны, м; с =2,998 10 8 м/с – скорость света в вакууме; Т – температура тела, К;
h = 6,625 ×10 -34 Дж×с– постоянная Планка.

Физическая постоянная k , равная отношению универсальной газовой постоянной R =8314Дж/(кг× K) к числу Авогадро NA =6,022× 10 26 1/(кг× моль):

Число различных конфигураций системы из N частиц для данного набора чисел n i (число частиц, находящихся в i -том состоянии, которому соответствует энергия e i ) пропорционально величине:

Величина W есть число способов распределения N частиц по энергетическим уровням. Если справедливо соотношение (6) то считается, что исходная система подчиняется статистике Больцмана. Набор чисел n i , при котором число W максимально, встречается наиболее часто и соответствует наиболее вероятному распределению.

Физическая кинетика – микроскопическая теория процессов в статистически неравновесных системах.

Описание большого числа частиц может успешно осуществляться вероятностными методами. Для одноатомного газа состояние совокупности молекул определяется их координатами и значениями проекций скоростей на соответствующие координатные оси. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии:

есть ожидаемое число молекул в объеме d d , координаты которых находятся в интервале от до +d , а скорости в интервале от до +d.

Если осредненной по времени потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией, то газ называется идеальным. Идеальный газ называется газом Больцмана, если отношение длины пробега молекул в этом газе к характерному размеру течения L конечно, т.е.

т.к. длина пробега обратно пропорциональна nd 2 (n – числовая плотность 1/м 3 , d – диаметр молекулы, м).

Величину

называют H -функцией Больцмана для единицы объема, которая связана с вероятностью обнаружения системы из молекул газа в данном состоянии. Каждому состоянию соответствуют определенные числа заполнения шестимерных пространственно-скоростных ячеек, на которые может быть разбито фазовое пространство рассматриваемых молекул. Обозначим W вероятность того, что в первой ячейке рассматриваемого пространства окажется N 1 молекул, во второй N 2 и т.д.

С точностью до постоянной, определяющей начало отсчета вероятности, правомерно соотношение:

,

где – H-функция области пространства А , занятой газом. Из (9) видно, что W и H взаимосвязаны, т.е. изменение вероятности состояния приводит к соответствующей эволюции H функции.

Больцмана принцип устанавливает связь между энтропией S физической системы и термодинамической вероятностью W её состояния:

(печатается по изданию: Коган М.Н. Динамика разреженного газа. – М.: Наука, 1967.)

Общий вид КУБ:

где – массовая сила, обусловленная наличием различных полей (гравитационного, электрического, магнитного), действующая на молекулу; J – интеграл столкновений. Именно этот член уравнения Больцмана учитывает столкновения молекул друг с другом и соответствующие изменения скоростей взаимодействующих частиц. Интеграл столкновений представляет собой пятимерный интеграл и имеет следующую структуру:

Уравнение (12) с интегралом (13) получено для столкновения молекул, при которых не возникает тангенциальных сил, т.е. сталкивающиеся частицы считаются идеально гладкими.

В процессе взаимодействия внутренняя энергия молекул не меняется, т.е. предполагается, что эти молекулы являются идеально упругими. Рассматриваются две группы молекул, имеющих до соударения друг с другом (столкновения) скорости и (рис. 1), а после столкновения соответственно скорости и . Разность скоростей и называется относительной скоростью, т.е. . Ясно, что для гладкого упругого столкновения . Функции распределения f 1 ", f", f 1 ,f описывают молекулы соответствующих групп после и до столкновений, т.е. ; ; ; .

Рис. 1. Столкновение двух молекул.

В (13) входят два параметра, характеризующие расположение сталкивающихся молекул друг относительно друга: b и ε; b – прицельное расстояние, т.е. наименьшее расстояние, на которое сблизились бы молекулы при отсутствии взаимодействия (рис. 2); ε называют угловым параметром столкновений (рис. 3). Интегрирование по b от 0 до ¥ и по от 0 до 2p (два внешних интеграла в (12)) охватывает всю плоскость силового взаимодействия перпендикулярно вектору

Рис. 2. Траектория движения молекул.

Рис. 3. Рассмотрение взаимодействия молекул в цилиндрической системе координат: z , b , ε

Кинетическое уравнение Больцмана выведено при следующих допущениях и предположениях.

1. Считается, что происходит в основном столкновения двух молекул, т.е. роль столкновений одновременно трех и большего числа молекул незначительна. Это допущение позволяет использовать для анализа одночастичную функцию распределения, которая выше названа просто функцией распределения. Учет столкновения трех молекул приводит к необходимости использования в исследовании двухчастичной функции распределения. Соответственно анализ существенно усложняется.

2. Предположение о молекулярном хаосе. Оно выражается в том, что вероятности обнаружения частицы 1 в фазовой точке и частицы 2 в фазовой точке независимы друг от друга.

3. Равновероятны столкновения молекул с любым прицельным расстоянием, т.е. функция распределения не меняется на диаметре взаимодействия. Необходимо отметить, что анализируемый элемент должен быть малым, чтобы f в пределах этого элемента не менялась, но в то же время чтобы не была велика относительная флуктуация ~ . Потенциалы взаимодействия, используемые при вычислении интеграла столкновений, являются сферически симметричными, т.е. .

Распределение Максвелла-Больцмана

Равновесное состояние газа описывается абсолютным Максвелловским распределением, которое является точным решением кинетического уравнения Больцмана:

где m – масса молекулы, кг.

Общее локально-максвелловское распределение иначе называемое распределение Максвелла-Больцмана:

в том случае, когда газ движется как целое со скоростью и переменные n , T зависят от координаты
и времени t .

В поле тяготения Земли точное решение уравнения Больцмана показывает:

где n 0 = плотность у поверхности Земли, 1/м 3 ; g – ускорение силы тяжести, м/с 2 ; h – высота, м. Формула (16) является точным решением кинетического уравнения Больцман либо в безграничном пространстве, либо при наличии границ, не нарушающих этого распределения, при этом температура также должна оставаться постоянной.

Эта страница оформлена Пузиной Ю.Ю. при поддержке Российского Фонда Фундаментальных Исследований – проект №08-08-00638.

Родился в 1844 году в Вене. Больцман является первопроходцем и первооткрывателем в науке. Его работы и исследования часто были непонятны и отвергнуты обществом. Однако с дальнейшим развитием физики его труды были признаны и впоследствии опубликованы.

Научные интересы ученого охватывали такие фундаментальные области, как физика и математика. С 1867 года он работал преподавателем в ряде высших учебных заведений. В своих исследованиях он установил, что обусловлено хаотическими ударами молекул о стенки сосуда, в котором они находятся, в то время как температура напрямую зависит от скорости движения частиц (молекул), иными словами, от их Следовательно, чем с большей скоростью движутся эти частицы, тем выше и температура. Постоянная Больцмана названа в честь знаменитого австрийского ученого. Именно он внес неоценимый вклад в развитие статической физики.

Физический смысл данной постоянной величины

Постоянная Больцмана определяет связь между такими как температура и энергия. В статической механике она играет главную ключевую роль. Постоянная Больцмана равна k=1,3806505(24)*10 -23 Дж/К. Числа, находящиеся в круглых скобках, указывают на допустимую погрешность значения величины относительно последних цифр. Стоит отметить, что постоянная Больцмана также может быть получена из других физических постоянных. Однако эти вычисления достаточно сложны и трудновыполнимы. Они требуют глубоких познаний не только в области физики, но и

(k или k B) – физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта стала занимает ключевую позицию. Ее экспериментальное значение в системе СИ равен

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянную Больцмана можно получить из определения абсолютной температуры и других физических констант (для этого нужно уметь рассчитать из первых принципов температуру тройной точки воды). Но определение постоянной Больцмана с помощью основных принципов слишком сложное и нереальное при современном развитии знаний в этой области.
Постоянная Больцмана – излишняя физическая постоянная, если измерять температуру в единицах энергии, что очень часто делается в физике. Она, собственно, связью между хорошо определенной величиной – энергией и градусом, значение которого сложилось исторически.
Определение энтропии
Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояния Z, соответствующих данному макроскопическому состоянию (например, состояния с заданной полной энергией).

Коэффициент пропорциональности k и является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими (S) характеристиками, выражает главную (центральную) идею статистической механики.


Top