Производство современных химических волокон кратко. Презентация по технологии на тему "Технология производства химических волокон

Разработка урока технологии.

Разработано учителем технологии

«Общеобразовательной школы №2 акимата г. Шахтинска»

Карагандинской области Республики Казахстан

Султангареевой Луизой Махмутовной

Класс 7

Раздел: Знакомство с тканями.

Длительность: 1 час

Тема: Химические волокна, их свойства. Технология производства химических волокон.

Экологическое влияние тканей на организм человека.

создать условия для обобщения, систематизации и расширения знаний учениц о текстильных волокнах, их свойствах, процессах производства тканей;

способствовать формированию знаний о технологии производства тканей из химических волокон и их ассортименте;

способствовать выявлению пробелов в знаниях учащихся и их коррекции;

способствовать развитию умения анализировать информацию, наблюдательности и внимательности, мышления;

содействовать воспитанию положительной мотивации к предмету, активности в работе на уроке, аккуратности, а так же культуры поведения.

    • Уточнение и закрепление знаний о натуральных волокнах.
    • Знакомство с технологией получения химических волокон.
    • Нетканые материалы из химических волокон.
    • Ассортимент тканей.

Наглядность и оборудование:

Коллекции образцов тканей из химических и натуральных волокон;

Презентация Power Point «Производство тканей из химических волокон»;

Информационные материалы «Свойства тканей из химических волокон»

ХОД УРОКА.

Организационный момент.

а) приветствие;

б) выявление отсутствующих учащихся;

в) организация внимания учащихся.

Обратить внимание на доску, на которой размещены образцы тканей (в том числе нетканые - ватин, синтепон).

Вводная часть занятия.

1. Сообщение темы занятия. Введение в тему урока.

Посмотрите на свою одежду. Из чего она изготовлена?

Знаете ли вы, из каких материалов выполнены эти ткани?

Эти материалы природные или их создал человек?

Взгляните на занавеси окна. Что вы можете сказать об этой ткани? Каковы её несомненные достоинства? А недостатки?

Можно ли из этой ткани пошить одежду? Почему?

Сегодня на уроке мы будем говорить о химических волокнах, технологии их производства и свойствах тканей из этих волокон.

2. Совместное с учащимися формулирование учебных целей занятия:

Что предстоит сегодня нам изучить?

изучить особенности производства химических волокон;

выяснить, где целесообразно использование тканей из химических волокон (в соответствии с их свойствами).

3. Актуализация знаний учащихся. Беседа.

Каковы этапы производства ткани?

Назовите группы волокон по их происхождению.

4. Обобщение ответов. Подведение итога беседы.

III . Основная часть занятия

    1. Рассказ учителя «Производство химических волокон» с использованием материалов Презентации.

Технология получения химических волокон обеих групп одинакова: сырье (органические вещества) + химические растворители, получается жидкая вязкая масса. Эту массу продавливают через фильтры (фильеры), формируя тем самым нити. Затем эти нити погружают в ванну с отвердителями и после обработки и промывания сматывают на бобины, полученные непрерывные нити.

Успехи современной химии позволяют создавать химические волокна как из природных материалов, главным образом целлюлозы, получаемой из дерева, соломы, отходов хлопка. Такое волокно называется искусственным , так и из синтетических полимеров, продуктов переработки каменного угля, нефти. Это волокно - синтети ческое (запись в тетрадь в виде схемы).

Перечислить множество химических волокон, которые используются для производства тканей очень сложно. А в лабораториях синтезируются все новые и новые их виды.

  1. Самостоятельная работа учащихся

Проблема. Исследование «Причины и особенности создания химических волокон».

Работа с Информационным материалом «Свойства тканей из химических волокон » по подгруппам.

  1. Представление изученного материала. Метод «Карусель». Один из членов команды переходит к другой команде и рассказывает содержание своего материала.
  2. Обсуждение.
    • Причины создания химических волокон (Стоимость. Зависимость от природных и погодных условий. Проч.).
    • Этапы создания.
    • Свойства химволокон. (Особенные, оригинальные свойства:

Самое прочное волокно;

Волокно с высокими гигиеническими свойствами;

Ткани с высокой раздвижкой нитей и проч.

  1. Анализ ответов учащихся. Дополнение и уточнение.
  2. Работа с коллекцией образцов тканей.
    • назвать номера образцов тканей, изготовленных из химического волокна
    • определить области применения этой ткани в быту.
  1. Работа учащихся в тетрадях «Запись основных этапов производства химического волокна »

IV. Заключительная часть занятия.

Закрепление изученного. Устный диктант.

Если вы согласны с утверждением, хлопните в ладоши. Ваше несогласие выразите тишиной.

Утверждения:

1.Химические волокна делятся на две группы: искусственные и синтетические.

2.Сырьем для получения искусственных волокон служат полезные ископаемые: нефть, уголь, газ.

3.Сырьем для получения синтетических волокон служат: еловые щепа, отходы от переработки хлопка.

4. Технология получения нитей химических волокон едина и проста:

Сырье + растворители = вязкая масса.

Формирование нитей через фильтры.

Обработка нитей затвердителем, промывание.

Сматывание в бобины.

5. Химические волокна легкие, красивые, быстро сохнут.

6. На получение химических волокон затрачивается меньше средств и времени - они более экономичны.

7. У синтетических волокон очень высокие гигиенические свойства: гигроскопичность.

8. Соединять, при выработке тканей, химические волокна с натуральными нежелательно, так как они несовместимы.

9. У тканей из химических волокон низкая прочность.

10. Смешивают ли химические волокна с натуральными (для улучшения свойств тканей).

Рефлексия: беседа.

Что нового и интересного (неожиданного) вы узнали на занятии?

Как эти знания пригодятся вам в жизни?

Подведение итогов занятия.

Анализ ответов учащихся. Выставление оценок за работу на уроке.

Выдача домашнего задания .

Выполнить творческое задание « Применение тканей из химических волокон в быту» (изготовление поделки - макета «Платье бальное»; шторы; панно и проч.)

Обратить внимание учениц на особые свойства тканей из химических тканей: пышность, жесткость ткани, непромокаемость, прозрачность. Демонстрация образцов из Методического фонда учителя (работы учениц прошлых лет).

Приложение 1

Информационный материал 1

«Химические волокна, их свойства. Технология производства химических волокон»

В современном мире все больше тканей производят из химического волокна. Редко в гардеробе современного человека можно найти вещь, изготовленную только из натурального волокна. В наше время почти все натуральные ткани содержат добавки, которые улучшают их физико - механические свойства. Ими стали созданные человеком химические волокна. Однако надо отметить снижение гигиенические свойства.

Химические текстильные волокна получают путем переработки разного по происхождению сырья.

По этому признаку они делятся на две группы:

Искусственные (вискозные, ацетатные, медно-аммиачные);

Синтетические (полиэфирные, полиамидные, полиакрило-нитрильные, эластановые).

Этапы получения химического волокна.

I этап: Получение прядильного раствора.

Для искусственного волокна: Растворение в щелочи целлюлозной массы.

Для синтетического волокна: сложение химических реакций различных веществ.

II этап: Формирование волокна.

Пропуск раствора через фильеры.

Количество отверстий в фильере - 24-36 тысяч.
Раствор затвердевает, образуя твердые тонкие нити.

III этап: Отделка волокна.

Нити промывают, сушат, крутят, обрабатывают высокой температурой.

Отбеливают, красят, обрабатывают раствором мыла.

Характеристика свойств тканей из химических волокон

Свойства тканей

Показатели свойств тканей

вискозных

ацетатных

капрона

лавсана

нитрона

Физико-механические:

Прочность

понижается во влажном состоянии

Меньше, чем у вискозной, понижается во влажном состоянии

Очень высокая

Сминаемость

Небольшая

Небольшая

Драпируемость

Гигиенические:

Гигроскопичность

Воздухопроницаемость

Незначительная

Водопроницаемость

Теплозащитные

Невысокие

Меньше, чем у вискозной

Очень высокие

Технологические:

Небольшая

Раздвижка нитей

Значительная

Осыпаемость

Значительная

Незначительная

Износостойкость

Приложение 2

Информационный материал 2

Преимущества химических волокон

Название преимущества

Описание

Широкая сырьевая база.

Высокая рентабельность производства

Хлопковое волокно, например, вырастает за три месяца всего на 3-4 см, химические же волокна получают со скоростью сотен метров в минуту. О большей экономичности производства таких волокон говорят следующие цифры: на получение тонны хлопка затрачивается 200 рабочих дней, на получение тонны льна - 400 рабочих дней, а на тонну вискозного волокна - всего лишь 50 рабочих дней.

Независимость от климатических условий.

Чтобы получить много шерсти, нужны огромные пастбища для овец. Чтобы вырастить хлопок, лен и т. д., требуются плодородные почвы. Для получения натурального шелка нужны плантации тутовых деревьев. Во всех этих случаях сбор продукции сильно зависит от засухи и дождей, поздней или ранней весны, от времени наступления осени и морозов. Производство же синтетических волокон может быть организовано почти в любой местности, и на него не влияют условия погоды.

Многие химические волокна обладают также лучшими механическими свойствами.

Ткани из этих волокон обладают высокой прочностью, эластичностью, износостойкостью и меньшей сминаемостью. Именно поэтому появились смесовые ткани: натуральное волокно соединяют с химическими волокнами для улучшения свойств тканей.

Наличие новых свойств, невозможных для натуральных волокон.

В 60-70-е гг. созданы химические волокна из полимеров со специфическими свойствами, например:

термостойкие волокна (из ароматических полиамидов . полиимидов и др.), выдерживающие длительную эксплуатацию при 200-300° С;

жаростойкие углеродные волокна, получаемые карбонизацией химические волокна и обладающие высокой жаростойкостью (в бескислородных условиях до 2000° С, в кислородсодержащих средах до 350-400°С);

фторволокна (из фторсодержащих карбоцепных полимеров), устойчивые в агрессивных средах, физиологически безвредные, обладающие хорошими антифрикционными и электроизоляционными свойствами. Некоторые из этих волокон характеризуются также более высокими, чем обычные химические волокна, прочностью , модулем, большей растяжимостью и др.

Однако: недостаток некоторых химических волокон, например полиакрилонитрильных, полиэфирных, - низкая гигроскопичность .

Химические волокна — это волокна, созданные искусственным путем с помощью физических и химических процессов.

Производство химических волокон оказывает большое влияние на развитие текстильной промышленности — значительно расширяется ассортимент тканей, улучшаются их свойства, создаются новые виды тканей за счет смеси различных волокон и т. д. Наблюдается постоянное увеличение производства тканей из химических волокон.

Это вызвано тем, что:

  1. многие химические волокна по своим физико-механическим и гигиеническим свойствам не уступают натуральным, а часто и превосходят их;
  2. волокна можно получить с заданными свойствами;
  3. затраты на производство химических волокон значительно ниже, чем на производство натуральных.

В зависимости от вида исходного сырья химические волокна могут быть искусственные и синтетические.

Искусственные волокна

Искусственные волокна вырабатывают из древесной, хлопковой целлюлозы. Процесс производства волокон состоит из подготовки целлюлозы (подсушивание, обработка раствором едкого натра, в котором она набухает, одновременно удаляются растворимые примеси), получение прядильного раствора (растворение массы в щелочи и получение вязкого раствора), формования и отделки волокна.

Формование волокна

Вязкий раствор по трубопроводу 1 подается в прядильную машину.

1 — трубопровод;
2 — поршневой насос;
3 — фильтр;
4 — фильера;
5 — осаднтельная ванна;
6,7 — прядильные диски;
8 — воронка;
9 — центрифуга.

Под давлением, создаваемым поршневым насосом 2, раствор проходит фильтр 3 и продавливается через фильеру 4 в осадительную ванну 5, содержащую водный раствор серной кислоты. Фильера представляет собой колпачок из антикоррозионного металла, имеющий 24 — 36 отверстий диаметром 0,07 — 0,08 мм. При взаимодействии вязкого раствора и серной кислоты восстанавливается целлюлоза, струйки ее затвердевают, образуя твердые тонкие нити.

На центрифугальных прядильных машинах элементарные нити соединяются в одну комплексную нить, которая проходит систему прядильных дисков 6 и 7, вытягивается, поступает через воронку 8 во вращающуюся центрифугу 9. Нить наматывается на бобину.

Отделка

Отделка состоит из ряда операций: промывки (для удаления серной кислоты), беления, обработки раствором мыла для придания волокнам мягкости и рассыпчатости и др.

Искусственные волокна получают в виде комплексной нити и . Особенностью производства штапельного волокна является использование фильер большего размера, с числом отверстий 1600 — 12 000. Нити из каждой фильеры соединяются в общий жгут, который, пройдя отделочные операции, поступает на резальную машину, где разрезается на короткие отрезки.

«Обслуживающий труд», С.И.Столярова, Л.В.Домненкова

Ткани из искусственных и синтетических волокон нашли широкое применение как в быту, так и в промышленности. Из вискозных нитей изготавливают подкладочные ткани (саржа, сатин подкладочный), платьевые (крепмарокен, тафта), сорочечные (шотландка, пике), бельевые (полотно), а также декоративные и плащевые ткани. В смеси с хлопком химические волокна используют для производства бельевого трикотажа, спортивной одежды. Ацетатные волокна идут…

К химическим волокнам относятся, создаваемые в заводских условиях путём формирования из органических природных или синтетических полимеров или неорганических веществ. Искусственные волокна получают из высокомолекулярных соединений, встречающихся в готовом виде (целлюлоза, белки). Синтетические волокна производят из высокомолекулярных соединений, синтезируемых из низкомолекулярных соединений. Они подразделяются на гетероцепные и карбоцепные волокна. Гетероцепные волокна образуются из полимеров, в основной молекулярной цепи которых кроме атомов углерода содержатся атомы других элементов. Карбоцепными называют волокна, которые получают из полимеров, имеющих в основной цепи молекул только атомы углерода.

Прототипом процесса получения химических нитей послужил процесс образования шелкопрядом нити при завивке кокона. Существовавшая в 80-х гг. ХIХ в. Не совсем верная гипотеза о том, что шелкопряд выдавливает волокнообразующую жидкость через шелкоотделительные железы и таким образом прядёт нить, легла в основу технологических процессов формирования химических нитей. Современные способы формирования нитей также заключаются в продавливании исходных растворов или расплавов полимеров через тончайшие отверстия фильер.

Производство химических волокон состоит из пяти основных этапов: получение и предварительная обработка сырья, приготовление прядильного раствора или расплава, формирование нитей, отделка и текстильная переработка. Искусственные волокна получают из различного природного сырья - древесины, отходов хлопка, металлов, которые в процессе предварительной обработки проходят очистку или превращение в новые высокомолекулярные соединения.

Для получения синтетических волокон исходным сырьём являются газы, нефть, каменный уголь, продукты переработки которых используются для синтеза волокнообразующих полимеров.

Получение и предварительная обработка сырья для искусственных волокон и нитей состоит в его очистке или химическом превращении в новые полимерные соединения. Сырьё для синтетических волокон и нитей получают путём синтеза полимеров из простых веществ на предприятиях химической промышленности. Предварительно это сырьё не обрабатывают.

Приготовление прядильного раствора или расплава. При изготовлении химических волокон и нитей необходимо из твёрдого исходного полимера получить длинные тонкие текстильные нити с продольной ориентацией макромолекул, т.е. нужно переориентировать макромолекулы полимера. Для этого следует перевести полимер в жидкое (раствор) или размягченное (расплав) состояние, при котором нарушается межмолекулярное взаимодействие, увеличивается расстояние между макромолекулами и появляется возможность их свободного перемещения относительно друг друга. Растворы используются при получении искусственных и некоторых видов синтетических нитей (полиакрилонитрильных, поливинилспиртовых, поливинилхлоридных). Из расплавов образуются гетероцепные (полиамидные, полиэфирные) и некоторые карбоцепные (полиолефиновые) волокна и нити.

Прядильный раствор или расплав приготовляют в несколько стадий.

Растворение или расплавление полимера производят с целью получения раствора или расплава нужной вязкости и концентрации.

Смешивание полимеров из различных партий выполняют для повышения однородности растворов или расплавов, чтобы получать волокна равномерные по свойствам на всём их протяжении.

Фильтрация необходима для удаления из раствора или расплава механических примесей, не растворившихся частиц полимера, чтобы предотвратить засорение фильер и улучшить свойства волокна; путём многократного прохождения раствора или расплава через фильтры.

Обезвоздушивание заключается в удалении из раствора пузырьков воздуха, которые попадая в отверстия фильер, обрывают струйкой раствора и препятствуют образованию волокна; осуществляется путём выдерживания раствора в течение нескольких часов под вакуумом. Расплав обезвоздушиванию не подвергают, так как в расплавленной массе полимера воздуха практически нет.

Формирование нитей. Состоит в дозированном продавливании прядильного раствора или расплава через отверстия фильер, затвердевании вытекающих струек и наматывании полученных нитей на приёмные устройства. Струйки формируются в элементарные нити из раствора. При формировании из расплава струйки нитей, вытекающие из фильеры, охлаждаются в обдувочной шахте струёй воздуха или инертного газа. При формировании из раствора сухим способом струйки полимера обрабатываются струёй горячего воздуха, в результате чего растворитель испаряется, а полимер затвердевает. В случае формирования из раствора мокрым способом струйка нити из фильер поступают в раствор осадительной ванны, где происходит физико-химический процессы выделения полимера из раствора и иногда химические изменения состава исходного полимера. В последнем случае используется одна или две ванны для формирования нити.

При формировании получают либо комплексные нити, состоящие из нескольких длинных элементарных нитей, либо штапельные волокна-отрезки нитей определённой длины. Для получения комплексных текстильных нитей количество отверстий фильтре может быть от 12 до 100. Сформированные нити из одной фильеры соединяются, вытягиваются и наматываются.

Химические волокна и нити непосредственно после формирования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной отделки, которая включает в себя ряд операций.

Удаление примесей и загрязнений необходимо при получении вискозных, белковых и некоторых видов синтетических нитей, формируемым мокром способом. Эта операция осуществляется путём промывки нитей в воде или различных растворах. Беление нитей или волокон, которые впоследствии окрашиваются в светлые и яркие цвета, проводится путём их обработки оптическими отбеливателями.

Вытягивание и термообработка синтетических нитей необходимы для перестройки их первичной структуры. В результате нити становятся более прочными, но менее растяжимыми. Поэтому после вытягивания проводят термообработку для релаксации внутренних напряжений и частичной усадки нитей. Поверхностная обработка (авиаж, аппретирование, замасливание) необходима для придания нитям способности к последующим текстильным переработкам. При такой обработки повышается скольжение и мягкость, уменьшается поверхностное склеивание элементарных нитей и их обрывность, снижается электризуемость и т. п.

Сушка нитей после мокрого формирования и обработки различными жидкостями выполняется в специальных сушилках.

Текстильная переработка. Этот процесс предусмотрен для соединения нитей и повышения их прочности (скручивание и фиксация крутки), увеличения объёма валок нитей (перематывание), оценки качества полученных нитей (сортировка).

Одним из основных направлений расширения и улучшение ассортимента химических волокон является модификация существующих для придания им новых заранее заданных свойств

Издавна, для производства тканей люди использовали те волокна, которые давала им природа. Вначале, это были волокна диких растений, затем волокна конопли, льна, а также шерсть животных. С развитием земледелия люди начали выращивать хлопчатник, дающий очень прочное волокно.

Но природное сырьё имеет свои недостатки, натуральные волокна слишком короткие, требуют сложной технологической обработки. И, люди стали искать сырьё, из которого можно было бы дешёвым способом получать ткань тёплую, как шерсть, лёгкую и красивую как шёлк, практичную, как хлопок.

Сегодня химические волокна можно представить в виде следующей схемы:

Нажмите на картинку для ее увеличения


Сейчас в лабораториях синтезируются всё новые и новые виды химических волокон, и ни одному специалисту не под силу перечислить их необъятное множество. Учёным удалось заменить даже шерстяное волокно – оно называется нитрон.

  1. Производство химических волокон включает 5 этапов:
  2. Получение и предварительная обработка сырья.
  3. Приготовление прядильного раствора или расплава.
  4. Формование нитей.
  5. Отделка.
  6. Текстильная переработка.

Хлопковые и лубяные волокна содержат целлюлозу. Было разработано несколько способов получения раствора целлюлозы, продавливания его сквозь узкое отверстие (фильеру) и удаления растворителя, после чего получались нити, похожие на шёлковые. В качестве растворителей использовали уксусную кислоту, щелочной раствор гидрооксида меди, едкий натр и сероуглерод. Полученные нити называются соответственно:

  • ацетатными,
  • медноаммиачными,
  • вискозными.

При формовании из раствора по мокрому способу струйки попадают в раствор осадительной ванны, где происходит выделение полимера в идее тончайших нитей.

Большую группу нитей, выходящих из фильер, вытягивают, скручивают вместе и наматывают в виде комплексной нити на патрон. Количество отверстий в фильере при производстве комплексных текстильных нитей может быть от 12 до 100.

При производстве штапельных волокон в фильере может быть до 15000 отверстий. Из каждой фильеры получают жгутик волокон. Жгуты соединяются в ленту, которая после отжима и сушки режется на пучки волокон любой заданной длины. Штапельные волокна перерабатываются в пряжу в чистом виде или в смеси с натуральными волокнами.

Синтетические волокна вырабатывают из полимерных материалов. Волокнообразующие полимеры синтезируют из продуктов переработки нефти:

  • бензола
  • фенола
  • аммиака и т.д.

Изменяя состав исходного сырья и способы его переработки, синтетическим волокнам можно придавать уникальные свойства, которых нет у натуральных волокон. Синтетические волокна получают в основном из расплава, например, волокна из полиэфира, полиамида, продавливаемого через фильеры.

В зависимости от вида химического сырья и условий его формирования можно вырабатывать волокна с самыми различными, заранее намеченными свойствами. Например, чем сильнее тянуть струйку в момент выхода её из фильеры, тем прочнее получается волокно. Иногда химические волокна даже превосходят стальную проволоку такой же толщины.

Среди новых, уже появившихся волокон, можно отметить волокна – хамелеоны, свойства которых меняются в соответствии с изменениями окружающей среды. Разработаны полые волокна, в которые заливается жидкость, содержащая цветные магнетики. С помощью магнитной указки можно изменять рисунок ткани из таких волокон.

С 1972 года запущено производство арамидных волокон, которые разделяют по двум группам. Арамидные волокна одной группы (номэкс, конэкс, фенилон) используют там, где необходима стойкость к пламени, и термическим воздействиям. Вторая группа (кевлар, терлон) имеет высокую механическую прочность в сочетании с малой массой.

Высокую механическую прочность и хорошую устойчивость к химическим реагентам имеют керамические волокна, основной вид которых состоит из смеси оксида кремния и оксида алюминия. Керамические волокна можно использовать при температуре около1250°С. Они отличаются высокой химической стойкостью, а устойчивость к радиации позволяет применять их в космонавтике.

Таблица свойств химических волокон

Извитость

Прочность

Сминаемость

Вискозное

горит хорошо, пепел серый, запах жжёной бумаги.

Ацетатное

понижается во влажном состоянии

меньше, чем у вискозного

быстро горит жёлтым пламенем, остаётся оплавленный шарик

очень малая

плавится с образованием твёрдого шарика

очень малая

горит медленно, образует твёрдый тёмный шарик

очень малая

горит вспышками, образуется тёмный наплыв

XIX век ознаменовался важными открытиями в науке и технике. Резкий технический бум коснулся практически всех сфер производств, многие процессы были автоматизированы и перешли на качественно новый уровень. Техническая революция не обошла стороной и текстильное производство - в 1890 году во Франции впервые было получено волокно, изготовленное с применением химических реакций. С этого события началась история химических волокон.

Виды, классификация и свойства химических волокон

Согласно классификации все волокна подразделяются на две основные группы: органические и неорганические. К органическим относятся искусственные и синтетические волокна. Разница между ними состоит в том, что искусственные создаются из природных материалов (полимеров), но с помощью химических реакций. Синтетические волокна в качестве сырья используют синтетические полимеры, процессы же получения тканей принципиально не отличаются. К неорганическим волокнам относят группу минеральных волокон, которые получают из неорганического сырья.

В качестве сырья для искусственных волокон используются гидратцеллюлозные, ацетилцеллюлозные и белковые полимеры, для синтетических - карбоцепные и гетероцепные полимеры.

Благодаря тому, что при производстве химических волокон используются химические процессы, свойства волокон, в первую очередь механические, можно изменять, если использовать разные параметры процесса производства.

Главными отличительными свойствами химических волокон, по сравнению с натуральными, являются:

  • высокая прочность;
  • способность растягиваться;
  • прочность на разрыв и на длительные нагрузки разной силы;
  • устойчивость к воздействию света, влаги, бактерий;
  • несминаемость.

Некоторые специальные виды обладают устойчивостью к высоким температурам и агрессивным средам.

ГОСТ химические нити

По Всероссийскому ГОСТу классификация химических волокон достаточно сложная.

Искусственные волокна и нити, согласно ГОСТу, делятся на:

  • волокна искусственные;
  • нити искусственные для кордной ткани;
  • нити искусственные для технических изделий;
  • технические нити для шпагата;
  • искусственные текстильные нити.

Синтетические волокна и нити, в свою очередь, состоят из следующих групп: волокна синтетические, нити синтетические для кордной ткани, для технических изделий, пленочные и текстильные синтетические нити.

Каждая группа включает в себя один или несколько подвидов. Каждому подвиду присвоен свой код в каталоге.

Технология получения, производства химических волокон

Производство химических волокон имеет большие преимущества по сравнению с натуральными волокнами:

  • во-первых, их производство не зависит от сезона;
  • во-вторых, сам процесс производства хоть и достаточно сложный, но гораздо менее трудоемкий;
  • в-третьих, это возможность получить волокно с заранее установленными параметрами.

С технологической точки зрения, данные процессы сложные и всегда состоят из нескольких этапов. Сначала получают исходный материал, потом преобразовывают его в специальный прядильный раствор, далее происходит формирование волокон и их отделка.

Для формирования волокон используются разные методики:

  • использование мокрого, сухого или сухо-мокрого раствора;
  • применение резки металлической фольгой;
  • вытягивание из расплава или дисперсии;
  • волочение;
  • плющение;
  • гель-формование.

Применение химических волокон

Химические волокна имеют очень широкое применение во многих отраслях. Главным их преимуществом является относительно низкая себестоимость и продолжительный срок службы. Ткани из химических волокон активно используются для пошива специальной одежды, в автомобильной промышленности - для укрепления шин. В технике разного рода чаще применяются нетканые материалы из синтетического или минерального волокна.

Текстильные химические волокна

В качестве сырья для производства текстильных волокон химического происхождения (в частности, для получения синтетического волокна) используются газообразные продукты переработки нефти и каменного угля. Таким образом, синтезируются волокна, которые различаются по составу, свойствам и способу горения.

Среди наиболее популярных:

  • полиэфирные волокна (лавсан, кримплен);
  • полиамидные волокна (капрон, нейлон);
  • полиакрилонитрильные волокна (нитрон, акрил);
  • эластановое волокно (лайкра, дорластан).

Среди искусственных волокон самые распространенные - это вискозное и ацетатное. Вискозные волокна получают из целлюлозы - преимущественно еловых пород. С помощью химических процессов этому волокну можно придать визуальную схожесть с натуральным шелком, шерстью или хлопком. Ацетатное волокно производят из отходов от производства хлопка, поэтому они хорошо впитывают влагу.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

  1. Химический или адгезионный (клеевой) - сформованное полотно пропитывается, покрывается или орошается связующим компонентом в виде водного раствора, нанесение которого может быть сплошным или фрагментированным.
  2. Термический - в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления (бикомпонент).

Объекты промышленности химических волокон

Поскольку химическое производство охватывает несколько областей промышленности, все объекты химической промышленности делятся на 5 классов в зависимости от сырья и области применения:

  • органические вещества;
  • неорганические вещества;
  • материалы органического синтеза;
  • чистые вещества и химреактивы;
  • фармацевтическая и медицинская группа.

По типу назначения объекты промышленности химических волокон разделяются на основные, общезаводские и вспомогательные.


Top