Турбинные лопатки. Разработка и исследование конструктивных способов повышения кпд в концевых участках рабочих лопаток твд авиационных гтд Общая характеристика турбины

Ле Тиен Зыонг 1 , Нестеренко В.Г. 2

1 Аспирант, 2 кандидат технических наук, доцент,

Московский авиационный институт

РАЗРАБОТКА И ИССЛЕДОВАНИЕ КОНСТРУКТИВНЫХ СПОСОБОВ ПОВЫШЕНИЯ КПД В КОНЦЕВЫХ УЧАСТКАХ РАБОЧИХ ЛОПАТОК ТВД АВИАЦИОННЫХ ГТД

Аннотация

Приведены результаты расчётных и экспериментальных исследований конструктивных способов повышения эффективности современных и перспективных газотурбинных двигателей путём снижения потерь энергии газа в радиальном зазоре и уровня вторичных потерь энергии газа в межлопаточных каналах их высокотемпературных турбин высокого давления (ТВД). Предложены конструктивные способы уменьшения зоны распространения вторичных токов по высоте рабочей лопатки ТВД, способствующие повышению равномерности потока газа, обтекающего перо лопатки и уровень КПД ступени турбины.

Ключевые слова: высокотемпературная турбина, рабочая лопатка, бандажная полка, радиальный зазор, вторичные потери.

Le Tien Ziong 1 , Nesterenko V.G. 2

1 Postgraduate student, Moscow Aviation Institute

2 PhD in Engineering, Associate professor, Moscow Aviation Institute

DEVELOPMENT AND RESEARCH OF CONSTRUCTIVE METHODS FOR INCREASING PERFORMANCE FACTOR AT END SECTIONS OF MOVING BLADES OF TURBO-PROPELLER ENGINE OF AIRCRAFT GAS-TURBINE ENGINES

Abstract

The results of computational and experimental studies of constructive methods for increasing the efficiency of modern and promising gas turbine engines by reducing the energy loss of gas in the radial gap and the level of secondary losses of gas energy in the inter-path channels of their high-temperature high-pressure turbines (HPTs) are presented in the paper. The construction methods are proposed for reduction of a propagation zone of secondary currents along the height of the working blade of a turbine, which contribute to an increase in the uniformity of the gas flow around the blade airfoil and the level of efficiency of the turbine stage.

Keywords: high-temperature turbine, working blade, platform, radial clearance, secondary losses.

В современных и перспективных авиационных ГТД имеет место непрерывное повышение температуры газа перед турбиной и величин степени сжатия в компрессоре , , уровень этих величин показан в Таблице 1. Однако, увеличенная величина степени сжатия газа в компрессоре приводит к уменьшению высоты лопаток рабочего колеса и соплового аппарата турбины, из за чего возрастают относительные величины перетекания газа в радиальном зазоре и вторичные потери энергии газа в межлопаточных каналах, что приводит к росту потерь энергии газа и снижению КПД ТВД , .

В таблице 2 показаны технические параметры ряда ТВД гражданских ТРДД, которые имеют одинаковый уровень тяги, но отличаютя величиной температуры газа на выходе из камеры сгорания и конструкцией. Так, например, ТРДД PW 1400 имеет встроенный редуктор, который разделяет валы вентилятора и турбины вентилятора, и имеет самую большую величину степени двухконтурности, равную 12–ти.

Таблица 1 – Технические требования к новым двигателям для гражданской авиации

Наименование индикатора Базовый уровень Динамика целевых показателей
2010 г. 2015 г. 2020 г. 2025 г. 2030 г.
Этапы развития 1 2 3 4
Снижение крейсерского удельного расхода топлива и СО 2 % к двигателям 2010 г. 10–15 15–20 20–30
Снижение эмиссии NO x относи–

тельно норм ИКАО 2008 г. на (%)

100 20 45 65 80
Снижение шума по сравнению с нормой Гл. 4, EPN dB 15 >20 >40
Ресурсы основных двигателей,

«гор.»/«хол.» частей, тыс. полетных циклов

20/40 22/45 30/60
Снижение удельной стоимости жизненного цикла ВС на (%) 100 5 10 15 25

Кроме того, в этом двигателе имеется минимальное число ступеней турбины низкого давления (ТНД), поскольку вал ТНД вращается примерно в полтора раза быстрее, чем вал вентилятора. Следует обратить внимание на несколько большую массу редукторного ТРДД, примерно на 100 кг, что объясняется наличием встроенного редуктора. Редукторный ТРДД также имеет минимальный расход топлива, который является следствием большей величины степени двухконтурности.

Таблица 2 – Параметры ТРДД современных гражданских ЛА

Параметры ТРДД ПД–14

2–вальный

PW(1400G)

Редукторный ТРДД

LEAP–X

2–вальный ТРДД

RB285–70

3–вальный ТРДД

Диаметр вентилятора, мм 1900 2057 1905…1980 1830
Взлетная тяга, кгс 14,0 10,9–15,0 10,9–15,0 13,6
Степень двухконтурности 8,5 12 10 10
Температура газа перед турбиной исходный +50 °С +100 °С
Суммарная степень сжатия в компрессорной части ТРДД 41 45…50 45…50 40
Тяга на крейсерском режиме (Н=11 км, М=0,8), кгс 2430 2400
Удельный расход топлива, кг/кгс.ч 0,526 0,51 0,51 0,51
Число ступеней в компрессоре 1+3+8 1+P+3+8 1+4+10 1+6+6
Число ступеней в турбине 2+6 2+3 2+(6–7) 1+1+6
Суммарное число ступеней ТК 20 17 23–24 21
Число валов 2 2 (вал НД разъединен редуктором) 2 3
Число подшипников 5 6 5 8
Масса силовой установки, кг 3970 4080 4030(оценка) 3890(оценка)
Целевой уровень снижения NOx отн. CAEP6 –20…30 % –50 % –50 %
Целевой уровень запаса по шуму отн. Гл.4 15 dB 16 dB 10…15 dB
Применение МС–21 MC–21 (A320NEO) C919, A320NEO предложение для МС–21

Трёхвальный двигатель RB285–70 имеет наибольшее число опор и, следовательно, для них требуется наибольшее количество масла. Однако этот ТРДД имеет максимальные перспективы с точки зрения возможности увеличить величину степени сжатия в компрессоре, поскольку в трёх каскадах эту задачу решать легче, чем в двух. Очевидно, что для снижения величины удельного расхода топлива величина суммарной степени сжатия в компрессоре также важна, как и степень двухконтурности ТРДД , .

Рис. 1 – ТВД современного ТРДД с одноступенчатой ступенью и цилиндрической формой проточной части над рабочей лопаткой, h = 40 мм

На рис. 1 показана конструктивная схема турбины современного ТРДД, рабочая лопатка одноступенчатой ТВД выполнена бесполочной, отношение высоты лопатки к хорде корневого сечения равно 1,5.

Следующая ступень турбины низкого давления этого двигателя спроектирована с антивибрационной бандажной полкой, поскольку она имеет рабочую лопатку большого удлинения, более 5,3.

На рис. 2 представлен результат расчёта течения газа в концевой части рабочей лопатки турбины, видно перетекание газа через открытый радиальный зазор. Этот газ, на спинке лопатки распространяется по её высоте, смешиваясь с основным потоком, при этом происходит не только рост коэффициента потерь энергии, но и увеличение угла выхода потока от расчётного направления, что приводит к снижению степени расширения газа на верхней части рабочей лопатки турбины. При постановке бандажной полки, эти перетекания газа исключаются.

Рис. 2 – Течение газа через радиальный зазор

Большое число современных турбин ГТД средней и малой тяги спроектированы с малой высотой рабочих лопаток ТВД, где влияние радиального зазора на КПД велико. Например, лопатка рабочего колеса 1–ой ступени двухступенчатой ТВД ТВ7–117, максимальной мощности 2500 л.с., имеет высоту пера на выходе из ступени равную 20 мм, а рабочая величина радиального зазора, отнесённая к высоте пера этой лопатки, равна 2,5 %. Потери КПД этой ступени из за влияния радиального зазора могут составлять примерно 5 %. Кроме того, если радиальный зазор конусный, с раскрытием проточной части по высоте лопатки, как это показано на рис. 3, то эти потери КПД в ТВД ещё более увеличиваются.

Рис. 3 – Радиальный зазор над бандажированной лопаткой ТВД

1 – бандажная полка; 2 – закрытый радиальный зазор; 3 – открытый радиальный зазор; 4 – линии тока газов; Δ – радиальный зазор

На рис. 3 представлены два типа радиального зазора. В одном, где кривая 3 образует внутренний контур соплового аппарата 2–ой ступени турбины, этот радиальный зазор называется «открытым радиальным зазором». В другом, где кривая 2 образует модифицированную внутреннюю сторону СА, на выходе из лабиринтного уплотнения, горячий газ встречает сопротивление полки соплового аппарата, и подтормаживается. Для оценки величины гидравлического сопротивления лопатки, связанного с появлением вторичных течений газа, было проведено экспериментальное исследование решётки турбины при наличии и отсутствии раскрытия проточной части турбины (рис. 4а). Результаты проведенных исследований показаны на рис. 4(б).

Рис. 4 – Схема установки для исследования влияния меридионального раскрытия контура проточной части плоской решётки лопаток СА на коэффициент потерь энергии газа (а) и Результаты исследования решеток СА с различными углами меридионального раскрытия профиля проточной части γ = 0…45º (б)

Как видно из рис. 4(б) при раскрытии проточной части турбины более 30° уровень концевых потерь существенно возрастает. Даже при небольшой величине раскрытия проточной части турбины в 20° величина потерь энергии газа возрастает примерно в два раза.

Количество газа, которое проходит через лабиринтное уплотнение, устанавливаемое на бандажной полке, зависит от величины радиального зазора и эффективности самого лабиринтного уплотнения. Показанное на рис.5 ступенчатое лабиринтное уплотнение имеет коэффициент расхода, равный примерно µ = 0,65 …0,7, где коэффициент µ определяет по формуле Стодолы величину расхода газа при его протекании через лабиринтное уплотнение :

(1)

где: G – расход через лабиринт, µ – коэффициент расхода, F – площадь зазора, Р вх и Р вых – давления на входе и на выходе лабиринта, z – число лабиринтов, R – газавая постоянная, T – начальная температура.

Физическая картина процесса торможения газа, который происходит при попадании газа в лабиринтное уплотнение, показано на рис. 5(а) и рис. 5(б). Бандажные полки, показанные на этих рисунках, имеют по два гребня, однако конфигурация переднего гребня отличается. На рис.5 б представлен наклонный гребень, который более эффективен, чем прямой.

Рис. 5 – Течение газа через ступенчатый лабиринт, установленной на бандажной полке

1 – контур проточной части турбины; 2 – бандажная полка с гребнями уплотнений; 3 – перо лопатки ТВД

При отсутствии бандажной полки часть газа перетекает в осевом, а другая часть газа в окружном направлении. Потери КПД могут быть определены по зависимости:

(2)

где: – потерь КПД в радиальном зазоре; – относительный концевой радиальный зазор; – плотность газа в осевом зазоре на периферии на среднем диаметре; – угол выхода газа из решетки; l и t – хорда и шаг решетки.

Рис. 6 – Линии тока на поверхностях лопаток турбин со стороны спинки а) сопловой аппарат б) рабочая лопатка

На рис. 6 показаны результаты исследований влияния вторичных токов на течение газа в концевых зонах лопатки: слева – эксперимент, справа – расчёт. При малой высоте лопатки концевые зоны решётки, затронутые вторичными токами, могут смыкаться и КПД ступени будет существенно падать. Очевидно, что необходимо разработать методы снижения интенсивности вторичных токов в проектируемых турбинных решётках современных ГТД, в которых применяются профили большой толщины, связанной с необходимостью размещения каналов охлаждения.

Рис. 7 – Решётки турбины с плоской (1) и профилированной (2) стенками

Таблица 3 – Геометрические параметры решётки, представленной на рис. 7, и режимные параметры потока

Хорда профиля, С (см) 35.9
Ширина решетки, С ах (см) 29.5
Высота лопатки, S (см) 46
Отношение хорды профиля к высоте лопатки, С/S 0.78
Отношение хорды профиля к шагу решетки, C/P 1.23
Температура воздуха на входе, T 0 jn (К) 302
Полное давление воздуха на входе, p 0 jn (Па) 10 5
Угол потока относительно фронта решетки (град) 35
Среднемассовая скорость на входе, U м (м/c) 10
Число Рейнольдса Re m =U m C ax /ν 2.1 10 5
Интенсивность турбулентности во входном потоке (%) 5
Плотность теплового потока на торцевой стенке, q w (Вт/м 2) 840

На рис. 7 показана решётка лопатки турбины, у которой одинаковый профиль и с одним шагом . Геометрические параметры решёток представлены в таблице 3. При профилированной стенке, показанной на рис. 7(б), где впадина расположена вблизи вогнутой стороны профиля в начальной части канала, происходит местное снижение межлопаточного градиента давления, но эффективность этого способа невысока, поскольку снижение поперечного градиента давлений происходит на малой протяжённости канала .

Более эффектино использование S–образного профиля пера, варианты пространственного проектирования такой лопатки показаны на рис. 8 и рис.9.

Рис. 8 – Модификации профильной части рабочих лопаток: а) радиальная лопатка; б) саблевидная лопатка; в) лопатка с изогнутой входной и прямой выходной кромками

Рис. 9 – Рабочие лопатки ТВД с «изгибом» – навалом на спинку профильной части пера: а) без бандажной полки, лопатка ТРДД SAM 146; б) с бандажной полкой, лопатка Ролл Ройс Trent

На рис. 9 показана бандажированная лопатка турбины, в корневой части которой, на корыте профиля, имеются дополнительные отверстия 1, способствующие снижению температуры лопатки в этом критичном по уровню напряжений участке лопатки.

Далее представлены конструктивные варианты лопаток, в которых в концевой части пера на спинке профиля установлены гребни, препятствующие распространению вторичных токов по спинке пера лопатки и далее, образованию вихревого течения в срединной части канала, как это показано на рис 10.

Рис. 10 – Принцип возникновения вторичных потерь в турбиной решетке

Рис. 11 – Геометрические размеры ребра и координаты его расположения на спинке сопловой лопатки турбины

На рис. 11 показана конструктивная схема гребня и место его положения на спинке лопатки, а на рис. 12 – результаты экспериментального исследования двух лопаток: с гребнем и без гребня.

Как видно, гребень, установленный на спинке профильной части лопатки, вполне решает поставленную задачу, большая часть лопатки свободна от воздействия вихревых течений газа. Произведенное траверсирование поля давлений за исследованной решёткой показало, что интегральная интенсивность вторичных течений газа не уменьшилась, вторичные токи ранее распространялись по высоте лопатки, а в этой конструкции они сосредоточились в области лопатки под полкой. Однако, существенно то, что эпюра газовых углов газа выхода из лопаточной решётки существенно изменилась, область увеличения угла потока, примыкающая к торцу лопатки, снизилась, что прямо свидетельствует о возможности увеличении эффективной работы в ступени турбины.

Рис. 12 – Линии тока на поверхностях сопловых лопаток турбин со стороны спинки без ребра (а) и с ребром (б)

Результаты расчётного исследования аналогичной конструкции с гребнем, закреплённым на спинке профильной части пера лопатки турбины, показаны на рис. 13 и 14.

Рис. 13 – Геометрические размеры ребра и координаты его расположения на спинке бандажированной рабочей лопатки турбины

1 – перо лопатки турбины; 2 – ребро; 3 – контактная поверхность бандажной полки

Рис. 14 – Линии тока на поверхностях рабочих лопаток турбин со стороны спинки без ребра и с ребром

Рис. 15 – Зависимость потери КПД ступени турбин от величины относительного радиального зазора разных типов лопаток.

1а – Лопатка без бандажной полки с открытым зазором;

1б – Лопатка без бандажной полки с закрытым зазором;

2 – Бандажированная лопатка с прямоточным лабиринтом, установленным на бандажной полке;

3 – Бандажированная лопатка с ступечатым лабиринтом, установленным на бандажной полке;

4 – Бандажированная лопатка с ступенчатыми лабиринтами, установленным на бандажной полке, при установке ребра под полкой на выпуклой стороне профильной части лопатки;

– относительный радиальный зазор (%); Δη – потери КПД ступени (%)

В заключение рассмотрим результаты расчётной оценки влияния относительной величины радиального зазора над рабочей лопаткой в ступени турбины и особенностей его констуктивной реализации на потери КПД.

На рис. 15 представлена зависимость потери КПД ступени турбин от величины относительного радиального зазора для разных видов его конструктивного выполнения. Как видно, существенное влияние оказывает сама величина изменения относительного радиального зазора . Границы слева А и справа В отражают имеющийся в настоящее время диапазон изменения относительных величин радиального зазора. Так линия А отражает величину этого параметра для рабочей лопатки ТВД ТРДД SAM 146, а линия В – относится к первой ступени турбины ТВД ТВ 7–117. Кроме того, например, радиальный зазор в ТВД первой ступени турбины проектируемого ТРДД ПД 14, устанавливаемого на летательный аппарат (ЛА) МС 21, имеет величину = 1,25 %, а ТВлД Ардиден Н, устанавливаемый на вертолете Ка 52, имеет величину = 2 %, т.е. в этих ГТД величины изменяются в указанных выше параметрах. Данные рис. 15 представлены в таблице 4.

Таблица 4 – Изменение КПД ступени ТВД в зависимости от конструктивного выполнения уплотнений радиального зазора (см. рис.15)

№ п.п Варианты конструкции уплотнения радиального зазора

(см. рис 15)

Δη = f(, варианты конструктивного выполнения уплотнений радиального зазора)
% %
1 3,3 6,4
2 2,2 4,25
3 2 1,65 3,2
4 3 1,15 2,15
5 4 0,5 1,1

Лопатку рабочего колеса ТВД, обеспечивающую высокий КПД ступени ТВД, целесообразно проектировать:

– с полноразмерной бандажной полкой и ступенчатым лабиринтным уплотнением, гребни которого имеют наклон навстречу набегающему потоку газа;

– с профильной частью пера пространственного проектирования, S–образной формы по высоте и наклоном пера на его выпуклую сторону (спинку профильной части лопатки);

– в концевых частях пера на спинке профильной части лопатки целесообразно располагать гребни, препятствующие распространению вторичных токов в центральную область лопатки.

Список литературы / References

  1. Иноземцев, А. А. Основы конструирования авиационных двигателей и энергетических установок: Учебник для ВУЗов. В 5 т. Т. 2. Компрессоры. Камеры сгорания. Форсажные камеры. Турбины. Выходные устройства / А. А. Иноземцев, М. А. Нихамкин, В. Л. Сандрацкий. – М.: Машиностроение, 2008. – 365 с.
  2. Вьюнов С.А. Конструкция и проектирование авиационных газотурбинных двигателей / С.А. Вьюнов, Ю.И. Гусев, А.В. Карпов и др.; под общ. ред. д–ра техн. наук Хронина Д. В. – М.: Машиностроение, 1989, 368 с.
  3. Локай В. И. Газовые турбины двигателей летательных аппаратов. Теория, конструкция и расчет: Учебник для вузов / В. И. Локай, М. К. Максутова, В. А. Стрункин. – М.: Машиностроение, 1979. – 447 с.
  4. Жирицкий Г.С. Авиационные газовые турбины / Г.С. Жирицкий. – М.: Оборонгиз, 1950. – 512 с.
  5. Скубачевский Г. С. Авиационные газотурбинные двигатели / Г. С. Скубачевский. – М.: Машиностроение, 1969. - 544 с.
  6. Холщевников К. В., Емин О. Н., Митрохин В. Т. Теория и расчет авиационных лопаточных машин / К. В. Холщевников, О. Н. Емин, В. Т. Митрохин. – М.: Машиностроение, 1986. – 432 с.
  7. Дейч М.Е. Газодинамика решёток турбомашин / М. Е. Дейч. – М.: Энергоатомиздат, 1996. – С. 528.
  8. Абианц В.Х. Теория авиационных газовых турбин / В. Х. Абианц. – М.: Машиностроение, 1979. – 216 с.
  9. Панов Д.О. Использование ANSYS CFX для прогнозирования характеристик решетки сопловых лопаток газовой турбины с профилированной торцевой стенкой / Д. О. Панов, Е. М. Смирнов, В. В. Рис // Журнал ANSYS ADVANTAGE. Русская редакция. – 2012. – № 17. – С. 33–38.
  10. Венедиктов В.Д. Атлас экспериментальных характеристик плоских решеток охлаждаемых газовых турбин / В. Д. Венедиктов, А. В. Грановский. – М.: ЦИАМ, 1990, – 393 с.

Список литературы на английском языке / References in English

  1. Inozemcev A. A. Osnovy konstruirovanija aviacionnyh dvigatelej i jenergeticheskih ustanovok: Uchebnik dlja VUZov. V 5 t. T. 2. Kompressory. Kamery sgoranija. Forsazhnye kamery. Turbiny. Vyhodnye ustrojstva / A. A. Inozemcev, M. A. Nihamkin, V. L. Sandrackij. – M.: Mashinostroenie, 2008. – 365 p.
  2. V’junov P. A. Konstrukcija i proektirovanie aviacionnyh gazoturbinnyh dvigatelej / P. A. V’junov, Ju .I. Gusev, A. V. Karpov andothers; edited by PhD in Engineering Hronina D. V. – M.: Mashinostroenie, 1989, 368 p.
  3. Lokaj V. I. Gazovye turbiny dvigatelej letatel’nyh apparatov. Teorija, konstrukcija i raschet: Uchebnik dlja vtuzov / V. I. Lokaj, M. K. Maksutova, V. A. Strunkin. – M.: Mashinostroenie, 1979. – 447 p.
  4. Zhirickij G.P. Aviacionnye gazovye turbiny / G.P. Zhirickij. – M.: Oborongiz, 1950. – 512 p.
  5. Skubachevskij G. P. Aviacionnye gazoturbinnye dvigateli / G. P. Skubachevskij. – M.: Mashinostroenie, 1969. - 544 p.
  6. Holshhevnikov K. V., Emin O. N., Mitrohin V. T. Teorija i raschet aviacionnyh lopatochnyh mashin / K. V. Holshhevnikov, O. N. Emin, V. T. Mitrohin. – M.: Mashinostroenie, 1986. – 432 p.
  7. Dejch M.E. Gazodinamika reshjotok turbomashin / M. E. Dejch. – M.: Jenergoatomizdat, 1996. – P. 528.
  8. Abianc V.H. Teorija aviacionnyh gazovyh turbin / V. H. Abianc. – M.: Mashinostroenie, 1979. – 216 p.
  9. Panov D.O. Ispol’zovanie ANSYS CFX dlja prognozirovanija harakteristik reshetki soplovyh lopatok gazovoj turbiny s profilirovannoj torcevoj stenkoj / D. O. Panov, E. M. Smirnov, V. V. Ris // Zhurnal ANSYS ADVANTAGE. Russkaja redakcija . – 2012. – V. 17. – P. 33–38.
  10. Venediktov V.D. Atlas jeksperimental’nyh harakteristik ploskih reshetok ohlazhdaemyh gazovyh turbin / V. D. Venediktov, A. V. Granovskij. – M.: CIAM, 1990, – 393 p.
  11. Bunker R. P. Axial turbine blade tips: Function, design, durability / R. S Bunker // Journal of propulsion and power. – 2006. – Vol.22. – № 2. – P. 271–285.

Лопатки турбин являются сложными по конструкции оригинальными деталями. Число конструктивных разновидностей лопаток весьма велико. Конструкции лопаток можно классифицировать по различным признакам.

Турбинные лопатки подразделяют на направляющие, которые монтируются в статоре турбины, и рабочие, закрепляемые на её роторе. Последние являются наиболее сложными по конструкции и имеют наибольшее число разновидностей.

Конструкцию рабочих лопаток можно условно представить состоящей из трёх основных частей: хвоста, рабочей части, головки. Каждая из этих частей имеет большое количество конструктивных разновидностей. На рисунке представлена одна из разновидностей конструкций турбинных лопаток, приведены некоторые элементы конструкций данной и других лопаток, обозначения поверхностей конструктивных элементов.

Пример конструкции рабочей лопатки и элементов конструкций лопаток: а - лопатка с вильчатым хвостом: 2 - внутренняя поверхность; 2 - выходная кромка; 3 - наружная поверхность; 4 - отверстие под скрепляющую проволоку; 5 - утолщение; 6 - входная кромка; 7 - наружный профиль сечения; 8 - внутренний профиль сечения; 9 - наружная галтель; 10 - внутренняя галтель; 11 - входная плоскость хвоста; 12 - полуотверстия под заклёпки; 13 - наружная радиальная плоскость хвоста; 14 - внутренняя радиальная плоскость хвоста; 15 - пазы хвоста; 16 - торец хвоста; 17 - выходная плоскость хвоста; 18 - вершина пазов хвоста; б - ёлочного профиля, полка, переход полки в рабочую часть: 1 - внутренняя плоскость полки; 2 - переходная галтель; 3 - наружная плоскость полки; в - хвост пазового двустороннего профиля, поверхности профиля: 2 - верхние; 2 - боковые; 3 - нижние; г - головка с шипом: 1 - торец головки; 2 - внутренняя поверхность шипа; 3 - наружная поверхность шипа; 4 - входная поверхность шипа; д - бандажная полка: 2 - внутренняя плоскость бандажной полки; 2 - входная плоскость бандажной полки; 3 - наружная плоскость бандажной полки; 4 - входная плоскость бандажной полки; е - перемычка двухъярусной лопатки: 2 - нижний ярус; 2 - внутренняя нижняя галтель перемычки; 3 - внутренняя плоскость перемычки; 4 - выходная плоскость перемычки; 5 - внутренняя верхняя галтель перемычки; 6 - верхний ярус; 7 - наружная плоскость яруса; 8 - наружная верхняя галтель перемычки; 9 - наружная плоскость перемычки; 10 - входная плоскость перемычки; 22 - наружная плоскость нижнего яруса; 12 - наружная галтель нижней перемычки.

Рабочие части направляющих и рабочих лопаток различают по ряду признаков: форме сечений и их взаимному расположению вдоль оси лопатки; нависанию (или его отсутствию) элементов над профилями рабочей части; способу построения поверхностей.

По форме сечений и их взаимному расположению вдоль оси рабочие части подразделяют на части с постоянным профилем и переменным.

Над концами рабочей части лопатки может нависать хвост, полка, оба этих элемента одновременно или нависа- ние может отсутствовать. По данному признаку рабочие части лопаток подразделяют на открытые, полуоткрытые и закрытые.

Если конструктивный элемент нависает с одного конца лопатки, например со стороны хвоста, а со стороны головки или в рабочей профильной части лопатки нависающие элементы отсутствуют, то подобные конструкции лопаток классифицируют как лопатки с полуоткрытым профилем рабочей части. Лопатки с закрытым профилем имеют нависающие элементы с обоих концов рабочей части. У такой лопатки над рабочей частью с одной стороны нависает хвост, а с другой - утолщение.

По способу построения поверхностей различают лопатки с аналитическими поверхностями рабочей части и со скульптурными поверхностями. Аналитические поверхности представляют собой сочетание линейных, цилиндрических и винтовых поверхностей. Эти поверхности достаточно просто формализуются математически. Определение скульптурной поверхности отражает технологический приём её формирования. Для этого используют шаблоны. Сечения рабочей части лопатки припасовывают к шаблонам, а между сечениями поверхность доводят на ощупь.

Турбинные лопатки в сборочной единице закрепляют различными способами. В зависимости от способа в конструкцию лопатки вводят соответствующие конструктивные элементы. По этому признаку лопатки подразделяют на имеющие хвостовую часть и не имеющие последней. К лопаткам с хвостовой частью относятся направляющие лопатки (рисунок 2). Концевые части таких лопаток могут быть ограничены торцовыми поверхностями (рисунок 2, а), поверхностями цилиндрической формы или сложной формы (рисунок 2, б).

Наибольшее распространение имеют рабочие лопатки, хвостовая часть которых ограничена профильными поверхностями следующих форм: Т-образной без заплечиков и с заплечиками, ёлочной, вильчатой, пазовой двусторонней. Лопатка с вильчатым хвостом показана на рисунке 1, а, с ёлочным - на рисунке 1, б, с пазовым двусторонним - на рисунке 1, в, с Т-образным без заплечиков - на рисунке 3, а, б, Т-образным с заплечиками - на рисунке З, в, с грибовидным - на рисунке З, г, с ёлочным - на рисунке З, е.


Во многих конструкциях лопаток со стороны головной части расположен элемент их связи в пакет посредством прикрепляемого бандажа. Данный элемент может быть выполнен в форме шипа (рисунок, 1, г) или полки, совместно с полками ряда лопаток, образующих собственный бандаж. По форме, расположению и числу шипы подразделяют на прямоугольные в один ряд на прямом (в сечении) срезе (рисунок 1, г), прямоугольные в один ряд на косом срезе, прямоугольные двойные на прямом срезе, прямоугольные двойные на косом срезе, фасонные в один ряд на прямом или косом срезе, фасонные двойные на прямом или косом срезе. Имеются также лопатки, которые в головной части не скрепляются бандажом. Одна из таких конструкций лопаток показана на рисунке 1,а.

В этом случае лопатки выполняют с отверстиями 4 (рис. 1, а), которые служат для скрепления лопаток в пакет проволокой.

Надёжность, долговечность, ремонтопригодность и другие качественные показатели турбин во многом определяются их лопаточным аппаратом. Поэтому к конструкциям лопаток предъявляют чёткие технические требования в частности к материалам и их состоянию, точности размеров и геометрической формы лопаток.

Стандартами регламентированы следующие параметры лопаток турбин:

  • размеры и формы профилей сечений рабочих частей;
  • размеры, которые определяют расположение в радиальном, осевом и тангенциальных направлениях рабочей части лопатки относительно поверхностей хвоста, являющихся конструкторскими базами;
  • посадочные размеры поверхностей сопряжений хвоста с диском, а также хвостов соседних лопаток;
  • посадочные размеры шипов, а также отверстий под скрепляющую проволоку;
  • размеры, определяющие отверстия от базовых поверхностей;

Регламентируются предельные отклонения размеров сечений рабочей части лопатки переменного профиля (рисунок 4, а), a именно: b - хорды; B - ширины; с - толщины; δ ВЫХ - толщины выходной кромки. Также регламентируются предельные отклонения профиля от его теоретического положения и прямолинейности.

Предельные отклонения параметров «b», «B» и «c» зависят от номинального размера хорды профиля, а параметра δ ВЫХ направляющих и от номинального размера толщины входной кромки.

У большинства конструкций рабочих лопаток размеры хорды профиля находятся в пределах от 20 до 300 мм, у направляющих лопаток от 30 до 350 мм. Размеры толщины выходной кромки направляющих и рабочих лопаток находятся в пределах от 0,5 до 1,3 мм. С учётом указанного диапазона размеров назначены возможные предельные отклонения на размеры «b», «B» и «с» и δ ВЫХ, а также от теоретического профиля и прямолинейности.

Предельные отклонения параметров профилей рабочей части лопатки с хордой, например, равной 20 мм, составляют:

b ±0,08; B ±0,08; c ±0,1; δ ВЫХ ± 0,3 мм.

Для средних по размеру хорд (100 — 150 мм) лопаток определяются:

b +0,45 -0,20 , B +0,45 -0,20 , c +0,50 -0,20 , δ +0,20 -0,10 от теоретического профиля +0,25 -0,10 , по прямолинейности 0,15 мм.

Для крупных лопаток (ширина хорды 200 — 300 мм) отклонения должны находится в следующих пределах:

b +0,70 -0,20 , B +0,70 -0,20 , c +0,80 -0,20 , δ +0,30 -0,10 от теоретического профиля +0,40 -0,10 , по прямолинейности 0,2 мм.

Допуски на параметры профилей рабочей части направляющих лопаток аналогичны рабочим лопаткам.

Лопатка является присоединяемой деталью к диску рабочего колеса турбины. Основные конструкторские базы сопряжения хвоста с диском относятся к профильным поверхностям хвоста, а вспомогательные конструкторские базы - к профильным поверхностям паза или гребня диска. Некоторые из поверхностей хвоста лопаток предусмотрены в конструкции в качестве измерительной базы Б из (рисунок 4, б) при измерении размеров, которые определяют рабочие части рабочих лопаток в осевом направлении. У полуоткрытых лопаток с шипами (поз. I, рисунок 4, б) отклонения размера L в диапазоне длин до 100 мм и от 100 мм и более 1200 мм должны находиться в пределах ±0,1 мм. Отклонения указанного размера полуоткрытых лопаток без шипов (поз. II, рисунок 4, б) зависят от величины размера L и назначаются в пределах от ±0,1 мм (при L до 100 мм) до ±0,6 (при L более 1200 мм). Предельные отклонения размеров в осевом направлении, которые определяют расположение рабочей части лопаток, зависят от длины рабочей части, расположения сечения, в котором осуществляется измерение, а также от направления завода лопатки при сборке с диском (радиальный завод - поз. I, рисунок 4, в, осевой завод - поз. II, рисунок 4,в).


Размерные цепи, определяющие точность расположения рабочей части лопаток в радиальном, осевом и тангенциальном направлениях

Размеры рабочих задают от выходной кромки до нормали к поверхности Б из и касательной к точке на входной (или выходной) плоскости хвоста. Размеры обозначены b хв - в первом от хвоста корневом сечении; b пол - в последнем полном контрольном сечении; b ср - в среднем сечении, определяемом по линейному закону относительно b хв и b пол. Величины предельных отклонений приведены в таблице.

Предельные отклонения размеров, определяющих расположение рабочей части лопаток в осевом направлении

Диапазон длины рабочей части, мм Предельные отклонения, мм
лопаток с радиальным заводом лопаток с осевым заводом
b пол b хв b пол b хв
До 100 (включительно) ±0,1 ±0,1 ±0,2 ±0,20
Свыше 100 до 300 ±0,3 ±0,2 ±0,3
Свыше 300 до 500 ±0,4 ±0,4
Свыше 500 до 700 ±0,7 ±0,3 ±0,6
Свыше 700 до 900 ±1,2 ±1,0
Свыше 900 до 1200 ±2,0 ±1,8
Свыше 1200 ±2,8 ±2,5

Конструкторской основной опорной базой рабочей лопатки радиального завода при её монтаже в сборочной единице служит радиально направленная поверхность хвоста, которая сопрягается с аналогичной поверхностью, имеющей тоже направление соседней лопатки, являющейся в данном случае конструкторской вспомогательной опорной базой. Поверхность хвоста присоединяемой лопатки берётся в качестве измерительной базы Б из (рисунок 4, г). Последняя используется при определении отклонений размеров, определяющих расположение рабочей части лопатки в тангенциальном направлении. Предельные отклонения от номинального значения угла у в плане между радиально ориентированной поверхностью хвоста лопатки и плоскостью Р-Р профилей сечений и определяют точность задания расположения профилей сечений.

При разработке конструкции рабочих лопаток величины предельных отклонений угла у назначают в зависимости от длины рабочей части лопатки и с учётом (для хвостовых сечений) угла выхода потока рабочего тела из канала лопаточного аппарата на следующую ступень давления. Для всех длин рабочей части (до 500 мм и более) и углом выхода потока до 20° допускаемые отклонения угла у хвостовых сечений ±5°, а для лопаток с углом выхода более 20° составляют ±0,12′.

Допускаемые отклонения угла у у головного сечения при любом значении угла выхода потока составляют ±12′, а в головных сечениях лопаток с длиной рабочей части более 500 мм, вне зависимости от угла выхода потока допускаемые отклонения угла должны находиться в пределах ±30′.

Допускаемые отклонения размеров поверхностей элементов, которые образуют ёлочные профили хвостовой части рабочей лопатки, показаны на рисунке 5.


Параметры шероховатости поверхностей рабочей части и переходных галтелей обычно задаются в пределах Ra = 1,25 — 0,63 мкм, в ряде случаев Ra = 0,63 — 0,32 мкм, а профильных поверхностей хвостов лопаток Ra = 1,25 — 0,63 мкм.

Вам также могут быть интересны статьи:

Базирование лопаток турбин. Обработка базовых поверхностей Технология обработки поверхностей рабочей части и переходных поверхностей лопаток турбин Электрохимическая обработка фасонных поверхностей Обработка сложных пространственных поверхностей

дипломная работа

2.1 Расчет на прочность лопатки ТВД

Рабочие лопатки осевой турбины являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

Нагрузки, действующие на лопатки

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки выполняем, учитывая воздействие только статических нагрузок. К ним относятся центробежные силы масс лопаток, которые появляются при вращении ротора, и газовые силы, возникающие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения.

Напряжения кручения от центробежных, газовых сил слабозакрученных рабочих лопаток компрессора малы, и ими пренебрегаем.

Напряжения растяжения от центробежных сил являются наиболее существенными.

Напряжения изгиба обычно меньше напряжений растяжения, причем при необходимости для уменьшения изгибающих напряжений в лопатке от газовых сил ее проектируют так, чтобы возникающие изгибающие моменты от центробежных сил были противоположны по знаку моментам от газовых сил и, следовательно, уменьшали последние.

Допущения, принимаемые при расчете

При расчете лопатки на прочность принимаем следующие допущения:

· лопатку рассматриваем как консольную балку, жестко задела н ную в ободе диска;

· напряжения определяем по каждому виду деформации отдел ь но;

· температуру в рассматриваемом сечении пера лопатки считаем одинаковой, т.е. температурные напряжения отсутс твуют;

· лопатку считаем жесткой, а деформацией лопатки под действием сил и моментов пренебрегаем;

· предполагаем, что деформации лопатки протекают в упругой зоне, т.е. напряжения в пере лопатки не превышают предел пропорциональности;

· температура лопатки изменяется только по длине пера.

Цель расчета

Цель расчета на прочность лопатки ТВД - определение напряжений и запасов прочности в различных сечениях по длине пера лопатки.

В качестве расчетного режима выбираем режим максимальной частоты вращения ротора и максимального расхода воздуха через двигатель. Этим условиям соответствует рабочий режим работы двигателя, то есть с частотой вращения 12220 об/мин.

Исходные данные

1. Материал лопатки: ЖС-6К.

2. Длина лопатки = 0.052 м.

3. Радиус корневого сечения = 0.294 м.

4. Радиус периферийного сечения R п = 0.346 м.

5. Объем бандажной полки м 3 .

6. Хорда профиля сечения пера = 0.0305 м.

7. Максимальная толщина профиля в сечениях:

· в корневом сечении м;

· в среднем сечении м;

· в периферийном сечении м.

8. Максимальная стрела прогиба профиля C max средних линий профиля в сечениях:

· в корневом сечении м;

· в среднем сечении м;

· в периферийном сечении м.

9. Угол установки профиля в сечениях:

· в корневом сечении = 1.0664 (рад);

· в среднем сечении = 0.8936 (рад);

· в периферийном сечении = 0.8116 (рад).

10. Интенсивность газовых сил на среднем радиусе в окружном направлении:

11. Интенсивность газовых сил в осевом направлении

12. Частота вращения рабочего колеса n = 12220 об/мин.

13. Плотность материала лопатки = 8250 кг/м 3 .

14. Для охлаждаемой лопатки турбины можно считать, что на двух третях длины лопатки (от периферийного сечения) температура - постоянна, а на одной трети (у корня) изменяется по закону кубической параболы:

где Х - расстояние от корневого сечения до расчетного;

t Л - температура лопатки в расчетном сечении;

t ЛС - температура лопатки на среднем радиусе (из термогазодинамического расчета);

t ЛК - температура лопатки в корневом сечении.

15. Предел длительной прочности выбираем в зависимости от температуры лопатки:

Согласно нормам прочности минимальный запас по статической прочности профильной части рабочей лопатки турбины должен быть не менее 1.3.

Расчёт на ЭВМ

Вычисления делаем по программе Statlop.exe. Результаты приведены в таблице 2.1.

Таблица 2.1 - Результаты расчета лопатки на прочность

Рисунок 2.1 - График распределения суммарных напряжений лопатки по сечениям

Рисунок 2.2 - График распределения коэффициента запаса прочности лопатки по сечениям

Произведен расчет на статическую прочность пера рабочей лопатки ТВД. В качестве материала была использована жаропрочная сталь ЖС-6К. Полученные значения запасов прочности во всех сечениях удовлетворяют нормам прочности: .

Авиационный винтовентиляторный двигатель

Гидравлический расчет проточной части центробежного насоса НЦВС 40/30

3.5.1 Напряжение в лопасти от расчетного перепада давления напора определяется по формуле, где - расчетный перепад давления, = 11,85 b - ширина лопатки, b = 12 мм д - толщина лопатки, д = 3...

Исследование термонапряженного состояния и оценка ресурса охлаждаемой лопатки турбины авиационного ГТД

В результате расчёта поля напряжений лопатки на базовом режиме получаем, что минимальный запас прочности без ползучести, равный 0,79 имеет точка 55 (таблица 4). Таблица 4 Температура, °С 1010,9 Напряжение у, МПа 113...

Конструкторско-технологическая подготовка мелкосерийного производства валов агрегатов авиационных двигателей на специализированном участке

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Осевой компрессор

Расчёт по высоте лопатки ведётся по закону постоянной циркуляции. Первая ступень РК НА Втулка Периферия Втулка Периферия 124,77 71,52 250,77 155,57 м/с 175 175 м/с 174,61 174,61 град. 54,51 67,77 град. 47,44 32...

Создаем файл исходных данных IGOR0. tm: 9 1 - тип задачи (стационарная, плоская) 0 1 10 - количество отрезков задания теплоотдачи 4 19 63 93 108 111 135 156 178 206 7223,396 - коэффициент теплоотдачи на входной кромке 2885...

Охлаждение лопатки турбины высокого давления

Расчет термонапряженного состояния выполняем с помощью программы GRID3. EXE. Исходный файл SETAX. DAT (см. подпункт 5.3). После запроса указываем имя файла, содержащего данные о температурном поле лопатки (IGOR0. tem). Результат будет занесен в файл с именем IGOR0...

Проектирование турбины винтовентиляторного двигателя

Рабочая лопатка турбины является весьма ответственной деталью газотурбинного двигателя, от надежности работы которой зависит надежность работы двигателя в целом. При работе авиационного двигателя на рабочую лопатку действуют статические...

Разработка конструкции компрессора высокого давления ТРДДФсм для легкого фронтового истребителя на базе существующего ТРДДФсм РД-33

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Расчет турбореактивного двигателя р-95Ш

Технико-экономическое обоснование этапов технологического процесса изготовления, комплектов технологических баз, методов и последовательности обработки поверхностей водила

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом. Нагрузки действующие на лопатки...

Рабочие лопатки осевого компрессора являются ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом...

Узел компрессора ТРДД для пассажирского самолета

Цель расчета на прочность лопатки - определение статических напряжений и запасов прочности в различных сечениях по длине пера лопатки...

Узел компрессора ТРДД для пассажирского самолета

Для расчета разбивают перо лопатки поперечными сечениями на несколько равных участков высотой и ведут расчет от периферии к корневому сечению суммируя нагрузки и вычисляя напряжения...

Узел компрессора ТРДД для пассажирского самолета

Одним из основных видов крепления лопаток компрессора являются замки типа ”ласточкин хвост“. От осевого перемещения лопатки крепятся в пазах. Лопатки могут садиться с натягом до 0,05 мм и с зазором (0,03.0,06) мм. Обычно посадку производят с зазором...

Лопатка - это рабочая деталь ротора турбины. Ступень надежно фиксируется под оптимальным углом наклона. Элементы работают под колоссальными нагрузками, поэтому к ним предъявляют самые жесткие требования по качеству, надежности и долговечности.

Применение и виды лопаточных механизмов

Лопаточные механизмы широко применяются в машинах различного назначения. Наиболее часто используют их в турбинах и компрессорах.

Турбина - ротационный двигатель, работающий под действием значительных центробежных сил. Основной рабочий орган машины - ротор, на котором по всему диаметру закреплены лопатки. Все элементы помещены в общий корпус специальной формы в виде нагнетающего и подающего патрубков или сопел. На лопатки подается рабочая среда (пар, газ или вода), приводя в движение ротор.

Таким образом, кинетическая энергия движущегося потока преобразуется в механическую энергию на валу.

Различают два основных вида турбинных лопаток:

  1. Рабочие - находятся на вращающих валах. Детали передают механическую полезную мощность на присоединенную рабочую машину (часто это генератор). Давление на рабочих лопатках остается постоянным благодаря тому, что направляющие лопатки всю разность энтальпий преобразуют в энергию потока.
  2. Направляющие - закреплены в корпусе турбины. Данные элементы частично преобразуют энергию потока, благодаря чему вращение колес получает тангенциальное усилие. В турбине разница энтальпий должна быть понижена. Это достигается путем уменьшения числа ступеней. Если установить слишком много направляющих лопаток, то срыв потока будет угрожать ускоренному потоку турбины.

Методы изготовления турбинных лопаток

Турбинные лопатки изготавливают методом литья по выплавляемым деталям из высококачественного металлопроката. Используют полосу, квадрат, допускается применение штампованных заготовок. Последний вариант предпочтителен на крупных производствах, так как коэффициент использования металла достаточно высок, а трудозатраты - минимальны.

Лопасти турбин проходят обязательную термическую обработку. Поверхность покрывается защитными составами против развития коррозионных процессов, а также специальными составами, повышающие прочность механизма при работе в условиях высокой температуры. Например, никелевые сплавы практически не поддаются механической обработке, поэтому методы штамповки для производства лопаток не подходят.

Современные технологии подарили возможность производства турбинных лопаток методом направленной кристаллизации. Это позволило получить рабочие элементы с такой структурой, которую практически невозможно сломать. Внедряется метод изготовления монокристальной лопасти, то есть из одного кристалла.

Этапы производства турбинных лопаток:

  1. Литье или поковка. Литье позволяет получать лопатки высокого качества. Поковка производиться по спец заказу.
  2. Механическая обработка. Как правило, для механической обработки применяются токарно-фрезерные автоматизированные центры, например, японский комплекс Mazak или же на фрезерные обрабатывающие центра, такие как MIKRON швейцарского производства.
  3. В качестве финишной обработки применяют только шлифование.

Требования к лопаткам турбин, применяемые материалы

Лопатки турбины эксплуатируются в условиях агрессивной среды. Особо критична высокая температура. Детали работают под напряжением на растяжение, поэтому возникают высокие деформирующие усилия, растягивающие лопатки. Со временем детали касаются корпуса турбины, машина блокируется. Все это обуславливает применение материалов высочайшего качества для изготовления лопаток, способные выдерживать значительные нагрузки при крутящем моменте, а также любые усилия в условиях высокого давления и температуры. Качеством лопаток турбины оценивается общая эффективность агрегата. Напомним, что высокая температура необходима для повышения КПД машины, работающей по циклу Карно.

Лопатки турбины - ответственный механизм. Благодаря нему обеспечивается надежность работы агрегата. Выделим основные нагрузки во время работы турбины:

  • Возникают большие окружные скорости в условиях высокой температуры в паровом или газовом потоке, которые растягивают лопатки;
  • Формируются значительные статические и динамические температурные напряжения, не исключая и вибрационные нагрузки;
  • Температура в турбине достигает 1000-1700 градусов.

Все это предопределяет применение высококачественных жаропрочных и нержавеющих сталей для производства лопаток турбин.

Например, могут быть использованы такие марки как 18Х11МФНБ-ш, 15Х11МФ-ш, а также различные сплавы на основе никеля (до 65%) ХН65КМВЮБ.

В качестве легирующих элементов в состав такого сплава дополнительно вводят следующие компоненты: 6% алюминия, 6-10% вольфрама, тантала, рения и немного рутения.

Лопаточный механизм должен обладать определенной теплостойкостью. Для этого в турбине делают сложные системы охлаждающих каналов и выходных отверстий, которые обеспечивают создание воздушной пленки на поверхности рабочей или направляющей лопатки. Раскаленные газы не касаются лопасти, поэтому происходит минимальный нагрев, но сами газы не остывают.

Все это повышает КПД машины. Охлаждающие каналы формируются при помощи керамических стержней.

Для их производства применяют оксид алюминия, температура плавления которого достигает 2050 градусов.

Общая характеристика турбины

Турбина (рисунок 4.1) – осевая, двухступенчатая, состоит из одноступен- чатой ТВД и одноступенчатой ТНД. Обе турбины имеют охлаждаемые возду- хом сопловые и рабочие лопатки. На пониженных дроссельных режимах рабо- ты с целью повышения экономичности двигателя выполнено частичное отклю- чение охлаждения турбины.

Рис. 4.1 Турбина АЛ-31Ф (лист 1 из 2)


Рис. 4.1 Турбина АЛ-31Ф (лист 2 из 2)

Основные параметры и материалы деталей турбины приведены, соответст- венно, в таблицах 4.1 и 4.2.

Основные данные турбины


Таблица 4.1



Материалы деталей турбины


Таблица 4.2



Конструкция турбины высокого давления

Турбина высокого давления предназначена для привода компрессора вы- сокого давления и агрегатов, установленных на коробках приводов двигатель- ных и самолетных агрегатов. Турбина состоит из ротора и статора.

Ротор турбины высокого давления

Ротор турбины (рисунок 4.2) состоит из рабочих лопаток 1, диска 2, цапфы 3 и вала 4.

Рис. 4.2 Ротор турбины (лист 1 из 2)


Рис. 4.2 Ротор турбины (лист 2 из 2)

Рабочая лопатка (рисунок 4.3) – литая, полая с циклонно-вихревой схемой охлаждения. Во внутренней полости, с целью организации течения охлаждаю- щего воздуха, предусмотрены ребра, перегородки и турбулизаторы.


Рис. 4.3 Рабочая лопатка ТВД

Профильная часть лопатки 1 отделена от замка 2 полкой 3 и удлиненной ножкой 4. Полки лопаток, стыкуясь, образуют коническую оболочку, защи- щающую замковую часть лопатки от перегрева. Удлиненная ножка, обладая относительно низкой изгибной жесткостью, обеспечивает снижение уровня вибрационных напряжений в профильной части лопатки. Трехзубый замок 5

«елочного» типа обеспечивает передачу радиальных нагрузок с лопаток на диск. Зуб 6, выполненный в левой части замка, фиксирует лопатку от переме- щения ее по потоку, а паз 7 совместно с элементами фиксации обеспечивает удержание лопатки от перемещения против потока (рисунок 4.4).

Осевая фиксация рабочей лопатки осуществляется зубом и пластинчатым замком. Пластинчатый замок (один на две лопатки) 8 вставляется в пазы лопа- ток в трех местах диска 9, где сделаны вырезы, и разгоняется по всей окружно- сти лопаточного венца. Пластинчатые замки, устанавливаемые в месте распо- ложения вырезов в диске, имеют особую форму. Эти замки монтируются в де- формированном состоянии, а после выпрямления входят в пазы лопаток. При выпрямлении пластинчатого замка лопатки поддерживают с противоположных торцов.


Рис. 4.4 Осевая фиксация рабочих лопаток ТВД (лист 1 из 2)


Рис. 4.4 Осевая фиксация рабочих лопаток ТВД (лист 2 из 2)

Для снижения уровня вибрационных напряжений в рабочих лопатках меж- ду ними под полками размещают демпферы, имеющие коробчатую конструк- цию (рисунок 4.5). При вращении ротора под действием центробежных сил демпферы прижимаются к внутренним поверхностям полок вибрирующих ло- паток. За счет трения в местах контакта двух соседних полок об один демпфер энергия колебаний лопаток будет рассеиваться, что и обеспечит снижение уровня вибрационных напряжений в лопатках.


Рис. 4.5 Демпфер

Диск (рисунок 4.6) турбины штампованный, с последующей механической обработкой. В периферийной части диска выполнены пазы «елочного» типа для крепления 90 рабочих лопаток, канавки 1 для размещения пластинчатых замков осевой фиксации лопаток и наклонные отверстия 2 подвода воздуха, охлаж- дающего рабочие лопатки. Воздух отбирается из ресивера, образованного дву- мя буртиками, левой боковой поверхностью диска и аппаратом закрутки. На правой плоскости полотна диска выполнены буртик 3 лабиринтного уплотне- ния и буртик 4, используемый при демонтаже диска. В ступичной плоской час- ти диска выполнены цилиндрические отверстия 5 под призонные болты, соеди- няющие вал, диск и цапфу ротора турбины.


Рис. 4.6 Диск ТВД (лист 1 из 2)


Рис. 4.6 Диск ТВД (лист 2 из 2)

Балансировка ротора осуществляется грузиками (рисунок 4.7), закрепляе- мыми в проточке буртика диска и зафиксированными замком. Хвостовик замка загибается на балансировочный грузик.


Рис. 4.7 Узел крепления балансировочного груза ротора

Цапфа 1 (рисунок 4.8) обеспечивает опирание ротора о роликовый под- шипник. Левым фланцем цапфа центрируется и соединяется с диском турбины. На наружных цилиндрических проточках цапфы размещены втулки 2 лаби- ринтных уплотнений. Осевая и окружная фиксация втулок осуществляется ра- диальными штифтами 3. Для предотвращения выпадания штифтов под воздей- ствием центробежных сил после их запрессовки отверстия во втулках заваль- цовываются.


Рис. 4.8 Цапфа ТВД (лист 1 из 2)


Рис. 4.8 Цапфа ТВД (лист 2 из 2)

На наружной части хвостовика цапфы, ниже втулок лабиринтного уплот- нения, размещено контактное уплотнение (рисунок 4.9), зафиксированное ко- рончатой гайкой. Гайка законтрена пластинчатым замком.


Рис. 4.9 Узел контактного уплотнения

Внутри цапфы в цилиндрических поясках центрируются втулки контакт- ного и лабиринтного уплотнений. Втулки удерживаются корончатой гайкой, ввернутой в резьбу цапфы. Гайка законтривается отгибом усиков коронки в торцевые прорези цапфы. Контактное уплотнение показано на рисунок 4.10.


Рис. 4.10 Узел контактного уплотнения



Top