В каком году была открыта теория относительности. Так был ли прав Эйнштейн? Проверяем теорию относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга - как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно - или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит - то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Классическая физика считала тяготение рядовой силой среди множества природных сил (электрических, магнитных и т.д.). Тяготению было предписано "дальнодействие" (проникновение "сквозь пустоту") и удивительная способность придавать равное ускорение телам разных масс.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения.

Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация - это следствие деформации ("искривления") упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время "прогибается" под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате "продавливания" пространства-времени тяжелым шаром - Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Вначале обсуждается равенство ускорений свободного падения для тел разных масс (то, что массивный ключ и легонькая спичка одинаково быстро падают со стола на пол). Как подметил Эйнштейн, это уникальное свойство делает тяжесть очень похожей на инерцию.

В самом деле, ключ и спичка ведут себя так, как если бы они двигались в невесомости по инерции, а пол, комнаты с ускорением придвигался к ним. Достигнув ключа и спички, пол испытал бы их удар, а затем давление, т.к. инерция ключа и спички сказалась бы при дальнейшем ускорении пола.

Это давление (космонавты говорят - "перегрузка") называется силой инерции. Подобная сила всегда приложена к телам в ускоренных системах отсчета.

Если ракета летит с ускорением, равным ускорению свободного падения на земной поверхности (9,81 м/сек), то сила инерции будет играть роль веса ключа и спички. Их "искусственная" тяжесть будет точно такой же, как естественная на поверхности Земли. Значит, ускорение системы отсчета - это явление, вполне подобное гравитации.

Наоборот, в свободно падающем лифте естественная тяжесть устраняется ускоренным движением системы отсчета кабины "вдогонку" за ключом и спичкой. Разумеется, классическая физика не видит в этих примерах истинного возникновения и исчезновения тяжести. Тяготение лишь имитируется или компенсируется ускорением. Но в ОТО сходство инерции и тяжести признается гораздо более глубоким.

Эйнштейн выдвинул локальный принцип эквивалентности инерции и тяготения, заявив, что в достаточно малых масштабах расстояний и длительностей одно явление невозможно отличить от другого никаким экспериментом. Таким образом, ОТО еще глубже изменила научные представления о мире. Потерял универсальность первый закон ньютоновской динамики - оказалось, что движение по инерции может быть криволинейным и ускоренным. Отпала надобность в понятии тяжелой массы. Изменилась геометрия Вселенной: вместо прямого евклидовского пространства и равномерного времени появилось искривленное пространство-время, искривленный мир. Столь резкой перестройки воззрений на физические первоосновы мироздания не знала история науки.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, один из примеров - луч света, проходящий около Солнца. И ньютоновская механика, и ОТО признают, что он должен отклониться к Солнцу (падать). Однако ОТО предсказывает вдвое большее смещение луча. Наблюдения во время солнечных затмений доказали правоту предсказания Эйнштейна. Другой пример. У ближайшей к Солнцу планеты Меркурий незначительные отклонения от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона. Но именно такую орбиту дает вычисление по формулам ОТО. Замедлением времени в сильном гравитационном поле объясняют уменьшение частоты световых колебаний в излучении белых карликов - звезд очень большой плотности. А в последние годы этот эффект удалось зарегистрировать и в лабораторных условиях. Наконец, очень велика роль ОТО в современной космологии - науке о строении и истории всей Вселенной. В этой области знания также найдено много доказательств эйнштейновской теории тяготения. На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

Общая теория относительности (ОТО) — геометрическая теория тяготения, опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время — самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности.

С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий. Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные принципы общей теории относительности

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временную компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12—10?13 (Брагинский, Дикке и т. д.). Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Пространство-время ОТО и сильный принцип эквивалентности

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:
Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности.

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он, на самом деле, не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Важно отметить, что основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.

Основные следствия ОТО

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Специальная теория относительности (СТО) или частная теория относительности – это теория Альберта Эйнштейна, опубликованная в 1905 году в работе «К электродинамике движущихся тел» (Albert Einstein - Zur Elektrodynamik bewegter Körper. Annalen der Physik, IV. Folge 17. Seite 891-921. Juni 1905).

Она объясняла движение между разными инерциальными системами отсчёта или движение тел, двигающихся в отношении друг друга с неизменной скоростью. В этом случае ни один из объектов не должен приниматься за систему отсчёта, а рассматривать их надо относительно друг друга. СТО предусматривает только 1 случай, когда 2 тела не изменяют направление движения и двигаются равномерно.

Законы СТО перестают действовать, когда одно из тел изменяет траекторию движения или повышает скорость. Здесь имеет место общая теория относительности (ОТО), дающая общее толкование движения объектов.

Два постулата, на которых строится теория относительности:

  1. Принцип относительности - Согласно ему, во всех существующих системах отсчета, которые двигаются в отношении друг друга с неизменяющейся скоростью и не меняют направление, действуют одни и те же законы.
  2. Принцип скорости света - Скорость света одинакова для всех наблюдателей и не имеет зависимость от скорости их движения. Это высшая скорость, и ничто в природе не имеет большую скорость. Световая скорость равна 3*10^8 м/с.

Альберт Эйнштейн за основу брал экспериментальные, а не теоретические данные. Это явилось одной из составляющих его успеха. Новые экспериментальные данные послужили базой для создания новой теории.

Физики с середины XIX века занимались поиском новой загадочной среды, названной эфиром. Полагалось, что эфир может проходить через все объекты, но не участвует в их движении. Согласно убеждениям об эфире, изменяя скорость зрителя в отношении эфира, меняется и скорость света.

Эйнштейн, доверяя экспериментам, отверг понятие новой среды эфира и допустил, что скорость света всегда является постоянной и не зависит от любых обстоятельств, таких как скорость самого человека.

Временные промежутки, расстояния, и их однородность

Специальная теория относительности связывает временные промежутки и пространство. В Материальной вселенной существует 3 известных в пространстве: вправо и влево, вперед и назад, вверх и вниз. Если добавить к ним другое измерение, названное временным, то это составит основу пространственно-временного континуума.

Если Вы осуществляете движение с малой скоростью, ваши наблюдения не будут сходиться с людьми, которые двигаются быстрее.

Позже эксперименты подтвердили, что пространство, так же как и время, не может восприниматься одинаково: от скорости движения объектов зависит наше восприятие.

Соединение энергии с массой

Эйнштейн вывел формулу, которая соединила в себе энергию с массой. Эта формула получила широкое распространение в физике, и она знакома каждому ученику: E=m*c² , в которой E-энергия; m- масса тела, c-скорость распространения света.

Масса тела возрастает пропорционально увеличению скорости света. Если достигнуть скорости света, масса и энергия тела становятся безразмерными.

Увеличивая массу объекта, становится сложнее достичь увеличения его скорости, т. е для тела с бесконечно огромной материальной массой необходима бесконечная энергия. Но на деле этого достичь нереально.

Теория Эйнштейна объединила два отдельных положения: положение массы и положение энергии в один общий закон. Это сделало возможным преобразование энергии в материальную массу и наоборот.

Об учении Альберта Эйнштейна, которое свидетельствует об относительности всего, что происходит в этом бренном мире, не знает разве что ленивый. Уже почти сто лет длятся споры не только в мире науки, но и в мире практикующих физиков. Теория относительности Эйнштейна, описанная простыми словами достаточно доступна, и не является тайной для непосвященных.

Вконтакте

Несколько общих вопросов

Учитывая особенности теоретического учения великого Альберта, его постулаты могут быть неоднозначно расценены самыми разными течениями физиков-теоретиков, достаточно высокими научными школами, а также приверженцами иррационального течения физико – математической школы.

Еще в начале прошлого века, когда произошел всплеск научной мысли и на фоне общественных изменений стали возникать те или иные научные течения, появилась теория относительности всего, в чем живет человек. Каким образом бы не оценивали наши современники данную ситуацию, все в реальном мире действительно не статично, специальная теория относительности Эйнштейна :

  • Меняются времена, меняются взгляды и ментальное мнение общества на те или иные проблемы в социальном плане;
  • Общественные устои и мировоззрение относительно учения о вероятности в различных государственных системах и при особых условиях развития социума менялись с течением времени и под влиянием иных объективных механизмов.
  • Каким образом формировались взгляды общества на проблемы социального развития, таким же было отношение и мнения о теории Эйнштейна о времени .

Важно! Теория гравитации Эйнштейна была основанием для системных споров среди наиболее солидных ученых, как в начале ее разработки, так и во время ее завершения. О ней говорили, проходили многочисленные диспуты, она становилась темой разговоров в самых высокопоставленных салонах разных стран.

Ученые обсуждали, оно было предметом разговоров. Была даже такая гипотеза, что учение доступно для понимания только трем людям из ученого мира. Когда же пришло время к объяснению постулатов приступили жрецы самой таинственной из наук – евклидовой математики. Тогда была совершена попытка построить ее цифровую модель и такие же математически выверенные последствия ее действия на мировое пространство, то автор гипотезы признался, что стало очень трудно понимать даже то, что он создал. Итак, что представляет собой общая теория относительности, что исследует и какое прикладное применение она нашла в современном мире?

История и корни теории

На сегодняшний день в подавляющем большинстве случаев достижения великого Эйнштейна кратко называют полным отрицанием того, что изначально было непоколебимой константой. Именно это открытие позволило опровергнуть известную всем школьникам как физический бином.

Большинство населения планеты, так или иначе, внимательно и вдумчиво или поверхностно, пусть даже однажды, обращалось к страницам великой книги – Библии.

Именно в ней можно прочесть о том, что стало истинным подтверждением сути учения – того, над чем работал в начале прошлого века молодой американский ученый. Факты левитации другие достаточно привычные вещи в ветхозаветной истории однажды стали чудесами в новое время. Эфир – пространство, в котором человек жил совершенно иной жизнью. Особенности жизни в эфире изучали многие мировые знаменитости в области естественных наук. И теория гравитации Эйнштейна подтвердила, что описанное в древней книге – это правда.

Работы Хендрика Лоренца и Анри Пуанкаре позволили экспериментальным путем обнаружить те или иные особенности эфира. В первую очередь это работы по созданию математических моделей мира. Основой было практическое подтверждение того, что при движении материальных частиц в эфирном пространстве происходит их сокращение относительно направления движения.

Труды этих великих ученых позволили создать фундамент для главных постулатов учения. Именно данный факт дает постоянный материал для утверждения, что труды Нобелевского лауреата и релятивистская теория Альберта были и остаются плагиатом. Многие ученые и сегодня утверждают, что многие постулаты, были приняты намного раньше, например:

  • Понятие условной одновременности событий;
  • Принципы гипотезы о постоянном биноме и критериях скорости света.

Что сделать, чтобы понять теорию относительности ? Суть кроется в прошлом. Именно в трудах Пуанкаре было высказана гипотеза относительно того, что большие скорости в законах механики нуждаются в переосмыслении. Благодаря высказываниям французского физика ученый мир узнал о том, насколько относительно движение в проекции к теории эфирного пространства.

В статической науке рассматривался большой объем физических процессов для различных материальных объектов, движущихся с . Постулаты общей концепции описывают процессы, происходящие с ускоряющимися объектами, объясняют существование частиц гравитонов и собственно гравитации. Суть теории относительности в пояснении тех фактов, которые ранее были нонсенсом для ученых. В случае необходимости описания особенностей движения и законов механики, соотношений пространства и временного континуума в условиях приближения к скорости света следует применять постулаты исключительно учения относительности.

О теории коротко и ясно

Чем же настолько отличается учение великого Альберта от того, чем занимались физики до него? Ранее физика была наукой достаточно статичной, которая рассматривала принципы развития всех процессов в природе в сфере системы «здесь, сегодня и сейчас». Эйнштейн позволил увидеть все происходящее вокруг не только в трехмерном пространстве, но и относительно разнообразных объектов и точек времени.

Внимание! В 1905 году, когда Эйнштейн опубликовал свою теорию относительности , она позволила объяснить и в доступном варианте интерпретировать движение между разными инерциальными системами расчетов.

Ее основные положения – соотношение постоянных скоростей двух объектов, движущихся относительно друг друга вместо принятия одного из объектов, которые можно принимать как один из абсолютных факторов отсчета.

Особенность учения заключается в том, что его можно рассматривать в отношении одного исключительного случая. Главные факторы:

  1. Прямолинейность направления перемещения;
  2. Равномерность движения материального тела.

При изменении направления или других простейших параметров, когда материальное тело может ускоряться или сворачивать в стороны, законы статичного учения относительности не действительны. В этом случае происходит вступление в силу общих законов относительности, что может объяснить движение материальных тел в общей ситуации. Таким образом, Эйнштейн нашел объяснение всем принципам взаимодействия физических тел между собой в пространстве.

Принципы теории относительности

Принципы учения

Утверждение об относительности в течение ста лет подвергается самым оживленным дискуссиям. Большинство ученых рассматривают различные варианты применения постулатов в качестве применения двух принципов физики. И этот путь имеет наибольшую популярность в среде прикладной физики. Основные постулаты теории относительности, интересные факты , которые сегодня нашли неопровержимое подтверждение:

  • Принцип относительности. Сохранность соотношения тел при всех законах физики. Принятие их в качестве инерциальных систем отсчета, которые двигаются на постоянных скоростях относительно друг друга.
  • Постулат о скорости света. Она остается неизменяемой константой, при всех ситуациях, независимо от скорости и соотношения с источниками света.

Несмотря на противоречия между новым учением и основными постулатами одной из самых точных наук, опирающихся на постоянные статичные показатели, новая гипотеза привлекла свежим взглядом на окружающий мир. Успех ученому был обеспечен, что подтвердило вручение ему Нобелевской премии в области точных наук.

Что стало причиной столь ошеломительной популярности, и как Эйнштейн открыл свою теорию относительности ? Тактика молодого ученого.

  1. До сих пор ученые с мировым именем выдвигали тезис, а только затем проводили ряд практических исследований. Если на определенном моменте были получены данные, не подходящие под общую концепцию, они признавались ошибочными с подведением причин.
  2. Молодой гений применил кардинально иную тактику, ставил практические опыты, они были серийными. Полученные результаты, несмотря на то, что могли каким-то образом не вписываться в концептуальный ряд, выстраивались в стройную теорию. И никаких «ошибок» и «погрешностей», все моменты гипотезы относительности, примеры и итоги наблюдений четко вписывались в революционное теоретическое учение.
  3. Будущий нобелевский лауреат опроверг необходимость изучения загадочного эфира, где распространяются волны света. Убежденность в том, что эфир существует, привела к ряду значительных заблуждений. Основной постулат – изменение скоростей пучка света относительно наблюдающего за процессом в эфирной среде.

Теория относительности для чайников

Теория относительности — самое простое объяснение

Вывод

Главным достижением ученого является доказательство гармонии и единства таких величин, как пространство и время. Фундаментальность связи этих двух континуумов в составе трех измерений в сочетании с временным измерением, позволило познать многие тайны природы материального мира. Благодаря теории гравитации Эйнштейна стало доступно изучение глубин и другие достижения современной науки, ведь полностью возможности учения не использованы и на сегодняшний день.


Top