Пищевая цепочка животных примеры. Тема урока "цепи питания"

Кто что ест

Составь цепь питания, рассказывающую о героях песенки "В траве сидел кузнечик"

Животные, которые питаются растительной пищей, называются растительноядными. Те животные, которые едят насекомых, называются насекомоядными. На более крупную добычу охотятся хищные животные, или хищники. Насекомых, которые поедают других насекомых, тоже считают хищниками. Существуют, наконец, и всеядные животные (они едят и растительную, и животную пищу).

На какие группы можно разделить животных по способам питания? Заполни схему.


Цепи питания

Живые существа связаны между собой в цепи питания. Например: В лесу растут осины. Их корой питаются зайцы. Зайца может поймать и съесть волк. Получается такая цепь питания: осина - заяц - волк.

Составь и запиши цепи питания.
а) паук, скворец, муха
Ответ: муха - паук - скворец
б) аист, муха, лягушка
Ответ: муха - лягушка - аист
в) мышь, зерно, сова
Ответ: зерно - мышь - сова
г) слизень, гриб, лягушка
Ответ: гриб - слизень - лягушка
д) ястреб, бурундук, шишка
Ответ: шишка - бурундук - ястреб

Прочитай короткие тексты о животных из книги "С любовью к природе". Определи и запиши тип питания животных.

Осенью барсук начинает готовиться к зиме. Он отъедается и сильно жиреет. Пищей ему служит всё, что попадается: жуки, слизни, ящерицы, лягушки, мыши, а иногда даже маленькие зайчата. Ест он и лесные ягоды, и плоды.
Ответ: барсук всеядный

Зимой лисица ловит под снегом мышей, иногда куропаток. Иногда она охотится за зайцами. Но зайцы бегают быстрее лисицы и могут убежать от неё. Зимой лисицы близко подходят к селениям людей и нападают на домашнюю птицу.
Ответ: лисица плотоядная

В конце лета и осенью белка собирает грибы. Она накалывает их на ветки деревьев, чтобы грибы засохли. А ещё белочка рассовывает по дуплам и щёлкам орехи и жёлуди. Всё это пригодиться ей в зимнюю бескормицу.
Ответ: белка растительноядная

Волк - опасный зверь. Летом он нападает на разных зверей. Ест также мышей, лягушек, ящериц. Разоряет птичьи гнёзда на земле, поедает яйца, птенцов, птиц.
Ответ: волк плотоядный

Медведь разламывает гнилые пни и выискивает в них жирных личинок жуков-дровосеков и других насекомых, питающихся древесиной. Он ест всё: ловит лягушек, ящериц, одним словом, что только попадётся. Выкапывает из земли луковицы и клубни растений. Часто можно встретить медведя на ягодниках, на которых он с жадностью поедает ягоды. Иногда голодный медведь нападает на лосей, оленей.
Ответ: медведь всеядный

По текстам из предыдущего задания составь и запиши несколько цепей питания.

1. земляника - слизень - барсук
2. кора деревьев - заяц - лисица
3. зерно - птица - волк
4. древесина - личинки жука - дровосека - медведь
5. молодые побеги деревьев - олень - медведь

Составь цепь питания, используя рисунки.

Для существования живых организмов необходимы энергия и питательные вещества. Автотрофы трансформируют лучистую энергию Солнца в процессе фотосинтеза, синтезируя из углекислого газа и воды органические вещества.

Гетеротрофы используют эти органические вещества в процессе питания, разлагая их в конечном счете вновь до углекислого газа и воды, а накопленная в них энергия расходуется на различные процессы жизнедеятельности организмов. Таким образом, световая энергия Солнца переходит в химическую энергию органических веществ, а далее в механическую и тепловую.

Все живые организмы в экологической системе по типу питания можно разделить на три функциональные группы - продуценты, консументы, редуценты.

1. Продуценты - это зеленые растения-автотрофы, производящие органические вещества из неорганических и способные аккумулировать солнечную энергию.

2. Консументы - это животные-гетеротрофы, потребляющие готовые органические вещества. Консументы I порядка могут использовать органические вещества растений (травоядные животные). Гетеротрофы, использующие животную пищу, подразделяются на консументы II, III порядков и т. д. (плотоядные животные). Все они используют энергию химических связей, запасенную в органических веществах продуцентами.

3. Редуценты - это гетеротрофные микроорганизмы, грибы, разрушающие и минерализующие органические остатки. Таким образом, редуценты как бы заканчивают круговорот веществ, образуя неорганические вещества для вступления в новый цикл.

Солнце обеспечивает постоянный приток энергии, а живые организмы в конечном счете рассеивают ее в виде тепла. В процессе жизнедеятельности организмов происходит постоянный круговорот энергии и веществ, причем каждый вид использует лишь часть содержащейся в органических веществах энергии. В результате возникают цепи питания - трофические цепи, пищевые цепи, представляющие собой последовательность видов, извлекающих органические вещества и энергию из исходного пищевого вещества, при этом каждое предыдущее звено становится пищей для следующего (рис. 98).

Рис. 98. Общая схема пищевой цепи

В каждом звене большая часть энергии расходуется в виде тепла, теряется, что ограничивает число звеньев в цепи. Но большинство цепей начинается растением, а заканчивается хищником, причем наиболее крупным. Редуценты разрушают органические вещества на каждом уровне и являются конечным звеном в пищевой цепи.

В связи с уменьшением энергии на каждом уровне идет уменьшение и биомассы. Трофическая цепь обычно имеет не более пяти уровней и представляет собой экологическую пирамиду, с широким основанием внизу и сужающуюся кверху (рис. 99).

Рис. 99. Упрощенная схема экологической пирамиды биомассы (1) и пирамиды чисел (2)

Правило экологической пирамиды отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Различают три типа экологических пирамид:

Пирамиду, отражающую число особей на каждом уровне пищевой цепи, - пирамида чисел;

Пирамиду биомассы органического вещества, синтезированного на каждом уровне, - пирамида массы (биомассы);

- пирамиду энергии, показывающей величину потока энергии. Обычно цепь питания состоит из 3-4 звеньев:

растение → заяц → волк;

растение → полевка → лисица → орел;

растение → гусеница → синица → ястреб;

растение → суслик → гадюка → орел.

Однако в реальных условиях в экосистемах различные цепи питания перекрещиваются между собой, образуя разветвленные сети. Почти все животные, за исключением редких специализированных видов, используют разнообразные источники пищи. Поэтому при выпадении одного звена в цепи не происходит нарушения в системе. Чем больше видовое разнообразие и богаче пищевые сети, тем устойчивее биоценоз.

В биоценозах различают два типа трофических сетей: пастбищную и детритную.

1. В пастбищном типе пищевой сети поток энергии идет от растений к растительноядным животным, а далее к консументам более высокого порядка. Это сеть выедания. Вне зависимости от величины биоценоза и места обитания растительноядные животные (наземные, водные, почвенные) пасутся, выедают зеленые растения и передают энергию на следующие уровни (рис. 100).

Рис. 100. Пастбищная сеть питания в наземном биоценозе

2. Если поток энергии начинается с мертвых растительных и животных остатков, экскрементов и идет к первичным детритофагам - редуцентам, частично разлагающим органические вещества, то такая трофическая сеть называется детритной, или сетью разложения (рис. 101). К первичным детритофагам относятся микроорганизмы (бактерии, грибы), мелкие животные (черви, личинки насекомых).

Рис. 101. Детритная пищевая цепь

В наземных биогеоценозах присутствуют оба типа трофической цепи. В водных сообществах преобладает цепь выедания. И в том и в другом случае энергия используется полностью.

Трофические цепи составляют основу взаимосвязей в живой природе, но пищевые связи - это не единственный вид взаимоотношений между организмами. Одни виды могут участвовать в распространении, размножении, расселении других видов, создавать соответствующие условия для их существования. Все многочисленные и разнообразные связи между живыми организмами и окружающей средой обеспечивают существование видов в устойчивой, саморегулирующейся экосистеме.

| |
§ 71. Экологические системы § 73. Свойства и структура биоценозов

  • Вопрос 11. Живое вещество. Назовите и охарактеризуйте свойства живого вещества.
  • Вопрос 12. Живое вещество. Функции живого вещества.
  • Вопрос 13. С какой функцией живого вещества связывают Первую и Вторую точку Пастера.
  • Вопрос 14. Биосфера. Назовите и охарактеризуйте основные свойства биосферы.
  • Вопрос 15. В чем сущность принципа Ле Шателье – Брауна.
  • Вопрос 16. Сформулируйте закон Эшби.
  • Вопрос 17. Что является основой динамического равновесия и устойчивости экосистем. Устойчивость и саморегуляция экосистемы
  • Вопрос 18. Круговорот веществ. Типы круговоротов веществ.
  • Вопрос 19. Изобразите и поясните блоковую модель экосистемы.
  • Вопрос 20. Биом. Назовите наиболее крупные наземные биомы.
  • Вопрос 21. В чем сущность «правила краевого эффекта».
  • Вопрос 22. Виды эдификаторы, доминанты.
  • Вопрос 23. Трофическая цепь. Автотрофы, гетеротрофы, редуценты.
  • Вопрос 24. Экологическая ниша. Правило конкурентного исключения г. Ф. Гаузе.
  • Вопрос 25. Представьте в виде уравнения баланс пищи и энергии для живого организма.
  • Вопрос 26. Правило 10%, кто сформулировал и когда.
  • Вопрос 27. Продукция. Первичная и Вторичная продукция. Биомасса организма.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.
  • Вопрос 29. Для чего используют экологические пирамиды, назовите их.
  • Вопрос 30. Сукцессии. Первичная и вторичная сукцессия.
  • Вопрос 31. Назовите последовательные стадии первичной сукцессии. Климакс.
  • Вопрос 32. Назовите и охарактеризуйте этапы воздействия человека на биосферу.
  • Вопрос 33. Ресурсы биосферы. Классификация ресурсов.
  • Вопрос 34. Атмосфера – состав, роль в биосфере.
  • Вопрос 35. Значение воды. Классификация вод.
  • Классификация подземных вод
  • Вопрос 36. Биолитосфера. Ресурсы биолитосферы.
  • Вопрос 37. Почва. Плодородие. Гумус. Образование почвы.
  • Вопрос 38. Ресурсы растительности. Лесные ресурсы. Ресурсы животного мира.
  • Вопрос 39. Биоценоз. Биотоп. Биогеоценоз.
  • Вопрос 40. Факториальная и популяционная экология, синэкология.
  • Вопрос 41. Назовите и охарактеризуйте экологические факторы.
  • Вопрос 42. Биогеохимические процессы. Как осуществляется круговорот азота.
  • Вопрос 43. Биогеохимические процессы. Как осуществляется круговорот кислорода. Круговорот кислорода в биосфере
  • Вопрос 44. Биогеохимические процессы. Как осуществляется круговорот углерода.
  • Вопрос 45. Биогеохимические процессы. Как осуществляется круговорот воды.
  • Вопрос 46. Биогеохимические процессы. Как осуществляется круговорот фосфора.
  • Вопрос 47. Биогеохимические процессы. Как осуществляется круговорот серы.
  • Вопрос 49. Энергетический баланс биосферы.
  • Вопрос 50. Атмосфера. Назовите слои атмосферы.
  • Вопрос 51. Виды загрязнителей атмосферы.
  • Вопрос 52. Как происходит естественное загрязнение атмосферы.
  • Вопрос 54. Основные ингредиенты загрязнения атмосферы.
  • Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.
  • Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.
  • Вопрос 57. Причины образования и выпадения кислотных осадков. Какие газы вызывают образование кислотных осадков. Последствия.
  • Последствия кислотных дождей
  • Вопрос 58. Смог, его образование и влияние на человека.
  • Вопрос 59. Пдк, разовая пдк, среднесуточная пдк. Пдв.
  • Вопрос 60. Для чего используют пылеуловители. Типы пылеуловителей.
  • Вопрос 63. Назовите и охарактеризуйте методы очистки воздуха от паро - и газообразных загрязнителей.
  • Вопрос 64. Чем метод абсорбции отличается от метода адсорбции.
  • Вопрос 65. От чего зависит выбор метода очистки газа.
  • Вопрос 66. Назовите, какие газы образуются при сгорании топлива автотранспорта.
  • Вопрос 67. Пути очистки выхлопных газов от автотранспорта.
  • Вопрос 69. Качество воды. Критерии качества воды. 4 класса воды.
  • Вопрос 70. Норма водопотребления и водоотведения.
  • Вопрос 71. Назовите физико-химические и биохимические методы очистки воды. Физико-химический метод очистки воды
  • Коагуляция
  • Выбор коагулянта
  • Органические коагулянты
  • Неорганические коагулянты
  • Вопрос 72. Сточная вода. Охарактеризуйте гидромеханические методы очистки сточных вод от твердых примесей (процеживание, отстаивание, фильтрование).
  • Вопрос 73. Охарактеризуйте химические методы очистки сточных вод.
  • Вопрос 74. Охарактеризуйте биохимические методы очистки сточных вод. Достоинства и недостатки этого метода.
  • Вопрос 75. Аэротенки. Классификация аэротенков.
  • Вопрос 76. Суша. Два вида вредного воздействия на почву.
  • Вопрос 77. Назовите мероприятия по охране почв от загрязнений.
  • Вопрос 78. Утилизация и переработка отходов.
  • 3.1.Огневой способ.
  • 3.2. Технологии высокотемпературного пиролиза.
  • 3.3. Плазмохимическая технология.
  • 3.4.Использование вторичных ресурсов.
  • 3.5 Захоронение отходов
  • 3.5.1.Полигоны
  • 3.5.2 Изоляторы, подземные хранилища.
  • 3.5.3.Заполнение карьеров.
  • Вопрос 79. Назовите международные природоохранные организации. Межправительственные экологические организации
  • Вопрос 80. Назовите международные экологические движения. Неправительственные международные организации
  • Вопрос 81. Назовите природоохранные организации рф.
  • Международный союз охраны природы (мсоп) в россии
  • Вопрос 82. Виды природоохранных мероприятий.
  • 1. Природоохранные мероприятия в области охраны и рационального использования водных ресурсов:
  • 2. Природоохранные мероприятия в области охраны атмосферного воздуха:
  • 3. Природоохранные мероприятия в области охраны и рационального использования земельных ресурсов:
  • 4. Природоохранные мероприятия в области управления отходами:
  • 5. Энергосберегающие мероприятия:
  • Вопрос 83. Почему Всемирный день охраны природы отмечается 5 июня.
  • Вопрос 85. Устойчивое развитие. Правовая охрана биосферы.
  • Правовая охрана биосферы
  • Вопрос 86. Финансирование природоохранных мероприятий.
  • Вопрос 87. Экологическое нормирование. Экологический мониторинг. Экологическая экспертиза.
  • Вопрос 88. Экологические правонарушения. Ответственность за экологические правонарушения.
  • Вопрос 89. Рациональное природопользование.
  • Рациональное природопользование
  • Вопрос 90. Глобальные экологические проблемы и меры по предотвращению экологической угрозы.
  • Вопрос 91. Какие горючие газы являются компонентами газообразного топлива.
  • Вопрос 92. Охарактеризуйте следующие газы и их влияние на человека: метан, пропан, бутан.
  • Физические свойства
  • Химические свойства
  • Применение пропана
  • Вопрос 93. Охарактеризуйте следующие газы и их влияние на человека: этилен, пропилен, сероводород.
  • Вопрос 94. В результате чего образуется диоксид углерода и оксид углерода, их влияние на живые организмы.
  • Вопрос 95. В результате чего образуется оксид азота, оксид серы и пары воды, их влияние на живые организмы.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.

    ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища – потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) черезконсументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами). Различают 2 типа пищевых цепей – пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи – консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

    Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка – растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка – хищные насекомые, 3-го – плотоядные пресмыкающиеся (змеи и др.), 4-го – хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

    Вопрос 29. Для чего используют экологические пирамиды, назовите их.

    Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

    Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

    При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

    Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

    Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

    На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

    Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

    Первые экологические схемы в виде пирамид построил в двадцатых годах XX в. Чарлз Элтон. Они были основаны на полевых наблюдениях за рядом животных различных размерных классов. Элтон не включил в них первичных продуцентов и не делал никаких различий между детритофа-гами и редуцентами. Однако он отметил, что хищники обычно крупнее своих жертв, и понял, что такое соотношение крайне специфично лишь для определенных размерных классов животных. В сороковые годы американский эколог Реймонд Линдеман применил идею Элтона к трофическим уровням, абстрагировавшись от конкретных составляющих их организмов. Однако, если распределить животных по размерным классам легко, то определить, к какому трофическому уровню они относятся, гораздо сложнее. В любом случае сделать это можно лишь весьма упрощенно и обобщенно. Пищевые отношения и эффективность передачи энергии в биотическом компоненте экосистемы традиционно изображают в виде ступенчатых пирамид. Это дает наглядную основу для сопоставления: 1) разных экосистем; 2) сезонных состояний одной и той же экосистемы; 3) разных фаз изменения экосистемы. Существуют три типа пирамид: 1) пирамиды чисел, основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы, в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии, учитывающие энергоемкость организмов каждого трофического уровня.

    Типы экологических пирамид

    пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

    Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

    Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

    Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

    пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

    Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

    В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

    В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

    Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

    Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

    пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

    В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

    На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

    В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

    Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

    Основное условие существования экосистемы — это поддержание круговорота веществ и превращения энергии. Оно обеспечивается благодаря трофическим (пищевым) связям между видами, относящимися к разным функциональным группам. Именно на основе этих связей органические вещества, синтезированные продуцентами из минеральных веществ с поглощением солнечной энергии, передаются консументам и претерпевают химические превращения. В результате жизнедеятельности преимущественно редуцентов атомы основных биогенных химических элементов переходят из органических веществ в неорганические (СО 2 , NH 3 , H 2 S, H 2 O). Затем неорганические вещества используются продуцентами для создания из них новых органических веществ. А они снова с помощью продуцентов вовлекаются в круговорот. Если бы эти вещества не использовались многократно, жизнь на Земле была бы невозможна. Ведь запасы веществ, поглощаемых продуцентами, в природе не безграничны. Для осуществления полноценного круговорота веществ в экосистеме должны быть в наличии все три функциональные группы организмов. И между ними должно происходить постоянное взаимодействие в виде трофических связей с образованием трофических (пищевых) цепей, или цепей питания.

    Цепь питания (пищевая цепь) — последовательность организмов, в которой происходит поэтапный перенос вещества и энергии от источника (предыдущего звена) к потребителю (последующему звену).

    При этом один организм может поедать другой, питаться его отмершими остатками или продуктами жизнедеятельности. В зависимости от вида исходного источника вещества и энергии цепи питания подразделяют на два типа: пастбищные (цепи выедания) и детритные (цепи разложения).

    Пастбищные цепи (цепи выедания) — пищевые цепи, которые начинаются с продуцентов и включают консументов разных порядков. В общем виде пастбищную цепь можно показать следующей схемой:

    Продуценты -> Консументы I порядка -> Консументы II порядка -> Консументы III порядка

    Например: 1) пищевая цепь луга: клевер луговой — бабочка — лягушка — змея; 2) пищевая цепь водоема: хламидомонада — дафния — пескарь — судак. Стрелки в схеме показывают направление переноса вещества и энергии в цепи питания.

    Каждый организм в цепи питания относится к определенному трофическому уровню.

    Трофический уровень — совокупность организмов, которые в зависимости от способа их питания и вида корма составляют определенное звено пищевой цепи.

    Трофические уровни принято нумеровать. Первый трофический уровень составляют автотрофные организмы — растения (продуценты), на втором трофическом уровне находятся растительноядные животные (консументы I порядка), на третьем и последующих уровнях — плотоядные животные (консументы II, III и т. д. порядков).

    В природе почти все организмы питаются не одним, а несколькими видами корма. Следовательно, любой организм может находиться на разных трофических уровнях в одной и той же пищевой цепи в зависимости от характера корма. Например, ястреб, питаясь мышами, занимает третий трофический уровень, а поедая змей — четвертый. Кроме того, один и тот же организм может быть звеном разных пищевых цепей, связывая их между собой. Так, ястреб может съесть ящерицу, зайца или змею, которые входят в состав разных цепей питания.

    В природе пастбищные цепи в чистом виде не встречаются. Они связаны между собой общими пищевыми звеньями и образуют пищевую сеть , или сеть питания . Ее наличие в экосистеме способствует выживанию организмов при недостатке определенного вида корма благодаря возможности использовать другой корм. И чем шире видовое разнообразие особей в экосистеме, тем больше пищевых цепей в составе пищевой сети и тем устойчивее экосистема. Выпадение одного звена из цепи питания не нарушит всей экосистемы, так как могут быть использованы источники питания из других пищевых цепей.

    Детритные цепи (цепи разложения) — пищевые цепи, которые начинаются с детрита, включают детритофагов и редуцентов и заканчиваются минеральными веществами. В детритных цепях происходит перенос вещества и энергии детрита между детритофагами и редуцентами через продукты их жизнедеятельности.

    Например: погибшая птица — личинки мух — плесневые грибы — бактерии — минеральные вещества. Если детрит не требует механического разрушения, то он сразу превращается в перегной с последующей минерализацией.

    Благодаря детритным цепям в природе замыкается круговорот веществ. Отмершие органические вещества в детритных цепях превращаются в минеральные, которые поступают в среду, а из нее поглощаются растениями (продуцентами).

    Пастбищные цепи преимущественно располагаются в надземных, а цепи разложения — в подземных ярусах экосистем. Взаимосвязь пастбищных цепей с детритными осуществляется через детрит, попадающий в почву. Детритные цепи связаны с пастбищными через минеральные вещества, извлекаемые из почвы продуцентами. Благодаря взаимосвязи пастбищных и детритных цепей в экосистеме формируется сложная пищевая сеть, обеспечивающая постоянство процессов превращения вещества и энергии.

    Экологические пирамиды

    Процесс превращения вещества и энергии в пастбищных цепях имеет определенные закономерности. На каждом трофическом уровне пастбищной цепи не вся съеденная биомасса идет на образование биомассы консументов данного уровня. Значительная ее часть затрачивается на процессы жизнедеятельности организмов: движение, размножение, поддержание температуры тела и т. д. Кроме того, часть корма не усваивается и в виде продуктов жизнедеятельности попадает в окружающую среду. Другими словами, большая часть вещества и содержащейся в нем энергии при переходе от одного трофического уровня к другому теряется. Процент усвояемости сильно варьирует и зависит от состава пищи и биологических особенностей организмов. Многочисленные исследования показали, что на каждом трофическом уровне пищевой цепи теряется в среднем около 90 % энергии, и только 10 % переходит на следующий уровень. Американский эколог Р. Линдеман в 1942 г. сформулировал эту закономерность как правило 10 % . Используя это правило, можно рассчитать количество энергии на любом трофическом уровне цепи питания, если ее показатель известен на одном из них. С некоторой степенью допущения это правило используют и для определения перехода биомассы между трофическими уровнями.

    Если на каждом трофическом уровне пищевой цепи определить число особей, или их биомассу, или количество заключенной в ней энергии, то станет очевидным уменьшение этих величин по мере продвижения к концу цепи питания. Эту закономерность впервые установил английский эколог Ч. Элтон в 1927 г. Он назвал ее правилом экологической пирамиды и предложил выражать графически. Если любую из вышеуказанных характеристик трофических уровней изобразить в виде прямоугольников с одинаковым масштабом и расположить их друг над другом, то получится экологическая пирамида .

    Известны три типа экологических пирамид. Пирамида чисел отражает численность особей в каждом звене пищевой цепи. Однако в экосистеме второй трофический уровень (консументы I порядка ) численно может быть богаче первого трофического уровня (продуцентов ). В этом случае получается перевернутая пирамида чисел. Это объясняется участием в таких пирамидах особей, не равноценных по размерам. Примером может служить пирамида чисел, состоящая из лиственного дерева, листогрызущих насекомых, мелких насекомоядных и крупных хищных птиц. Пирамида биомассы отражает количество органического вещества, накопленного на каждом трофическом уровне пищевой цепи. Пирамида биомассы в наземных экосистемах правильная. А в пирамиде биомассы для водных экосистем биомасса второго трофического уровня, как правило, больше биомассы первого при определении ее в конкретный момент. Но поскольку водные продуценты (фитопланктон) имеют высокую скорость образования продукции, то в конечном итоге их биомасса за сезон все равно будет больше биомассы консументов I порядка. А это значит, что в водных экосистемах также соблюдается правило экологической пирамиды. Пирамида энергии отражает закономерности расходования энергии на разных трофических уровнях.

    Таким образом, запас вещества и энергии, накопленный растениями в пастбищных пищевых цепях, быстро расходуется (выедается), поэтому эти цепи не могут быть длинными. Обычно они включают от трех до пяти трофических уровней.

    В экосистеме продуценты, консументы и редуценты связаны трофическими связями и образуют цепи питания: пастбищные и детритные. В пастбищных цепях действует правило 10 % и правило экологической пирамиды. Можно построить три типа экологических пирамид: чисел, биомассы и энергии.

    Огромную роль в воспроизводстве жизни играет энергия Солнца. Количество этой энергии очень велико (примерно 55 ккал на 1 см 2 в год). Из этого количества продуценты — зеленые растения — в результате фотосинтеза фиксируют не более 1-2 % энергии, а пустыни и океан — сотые доли процента.

    Число звеньев в пищевой цепи может быть различным, но обычно их 3-4 (реже 5). Дело в том, что к конечному звену пищевой цепи поступает так мало энергии, что ее не хватит в случае увеличения числа организмов.

    Рис. 1. Пищевые цепи в наземной экосистеме

    Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

    Простейшая пищевая цепь (или цепь питания) может состоять из фитопланктона, затем идут более крупные травоядные планктонные ракообразные (зоопланктон), а заканчивается цепь китом (или мелкими хищниками), которые фильтруют этих ракообразных из воды.

    Природа сложна. Все ее элементы, живые и неживые, — одно целое, комплекс приспособленных друг к другу, взаимодействующих и взаимосвязанных явлений и существ. Это звенья одной цепи. И если удалить из общей цепочки хотя бы одно такое звено, результаты могут быть непредвиденными.

    Особенно негативно разрыв цепей питания может сказаться на леса — будь то лесные биоценозы умеренной зоны либо отличающиеся богатым видовым разнообразием биоценозы тропического леса. Многие виды деревьев, кустарников или травянистых растений пользуются услугами определенного опылителя — пчелы, осы, бабочки или колибри, обитающих в пределах ареала данного растительного вида. Как только погибнет последнее цветущее дерево или травянистое растение, опылитель вынужден будет покинуть данное местообитание. В результате погибнут питающиеся этими растениями или плодами дерева фитофаги (травоядные). Без пиши останутся охотившиеся на фитофагов хищники, а далее изменения последовательно коснутся остальных звеньев пищевой цепи. В итоге они скажутся и на человеке, поскольку у него есть свое определенное место в пищевой цепи.

    Пищевые цепи можно разделить на два основных типа: пастбищную и детритную. Пищевые цени, которые начинаются с автотрофных фотосинтезирующих организмов, называются пастбищными, или цепями выедания. На вершине пастбищной цепи стоят зеленые растения. На втором уровне пастбищной цепи обычно находятся фитофаги, т.е. животные, питающиеся растениями. Примером пастбищной пищевой цепи могут служить взаимоотношения между организмами на пойменном лугу. Начинается такая цепь с лугового цветкового растения. Следующее звено — бабочка, питающаяся нектаром цветка. Затем идет обитатель влажных местообитаний — лягушка. Ее покровительственная окраска позволяет ей подстеречь жертву, но не спасает от другого хищника — обыкновенного ужа. Цапля, поймав ужа, замыкает пищевую цепь на пойменном лугу.

    Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных — детрита, она называется детритной , или цепью разложения. Термин «детрит» означает продукт распада. Он позаимствован из геологии, где детритом называют продукты разрушения горных пород. В экологии детрит — это органическое вещество, вовлеченное в процесс разложения. Такие цепи характерны для сообществ дна глубоких озер, океанов, где многие организмы питаются за счет оседания детрита, образованного отмершими организмами верхних освещенных слоев водоема.

    В лесных биоценозах детритная цепь начинается с разложения мертвого органического вещества животными-сапрофагами. Наиболее активное участие в разложении органики здесь принимают почвенные беспозвоночные животные (членистоногие, черви) и микроорганизмы. Присутствуют и крупные сапрофаги — насекомые, которые готовят субстрат для организмов, осуществляющих процессы минерализации (для бактерий и грибов).

    В отличие от пастбищной цепи размеры организмов при движении вдоль детритной цепи не возрастают, а, наоборот, уменьшаются. Так, на втором уровне могут стоять насекомые-могильщики. Но наиболее типичными представителями детритной цепи являются грибы и микроорганизмы, питающиеся мертвым веществом и довершающие процесс разложения биоорганики до состояния простейших минеральных и органических веществ, которые затем в растворенном виде потребляются корнями зеленых растений на вершине пастбищной цепи, начиная тем самым новый круг движения вещества.

    В одних экосистемах преобладают пастбищные, в других — детритные цепи. Например, лес считается экосистемой с преобладанием детритных цепей. В экосистеме гниющего пня пастбищная цепь вообще отсутствует. В то же время, например, в экосистемах поверхности моря практически все продуценты, представленные фитопланктоном, потребляются животными, а их трупы опускаются на дно, т.е. уходят изданной экосистемы. В таких экосистемах преобладают пастбищные пищевые цепи, или цепи выедания.

    Общее правило , касающееся любой пищевой цепи, гласит: на каждом трофическом уровне сообщества большая часть поглощаемой с пищей энергии тратится на поддержание жизнедеятельности, рассеивается и больше не может быть использована другими организмами . Таким образом, потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная ее часть расходуется на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается.

    
    Top