Построения сечений многогранников. Исследовательская работа на тему "методы построения сечений многогранников"

Само же задание обычно звучит так: "построить натуральный вид фигуры сечения" . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим "кирпичика" с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения - параллельно линии, в которую проецируется плоскость на главном виде - обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть - натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае - точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в "кирпичик" и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки - получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону - получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине "кирпичика" - полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной - это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)


или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях - изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту - может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии "Сечение цилиндра наклонной плоскостью". С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Аксиомы планиметрии:

В различных учебниках свойства прямых и плоскостей могут быть представлены по-разному, в виде аксиомы, следствия из нее, теоремы, леммы и т.д. Рассмотрим учебник Погорелова А.В.

    Прямая разбивает плоскость на две полуплоскости.

    0

    От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

    Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Аксиомы стереометрии:

    Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие этой плоскости, и точки не принадлежащие ей.

    Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

    Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

    Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

    Из трех точек на прямой одна и только одна лежит между двумя другими.

    Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

    Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости.

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 0 . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

    От полупрямой на содержащей ее плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.

    На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.

Сечение

В пространстве две фигуры, для нашего случая плоскость и многогранник могут иметь следующее взаимное расположение: не пересекаются, пересекаются в точке, пересекаются по прямой и плоскость пересекает многогранник по его внутренности (рис.1), и при этом образуют следующие фигуры:

а) пустая фигура (не пересекаются)

б) точка

в) отрезок

г) многоугольник

Если в пересечении многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника с плоскостью .

рис.1

Определение. Сечением пространственного тела (например, многогранника) называется фигура, получающаяся в пересечении тела с плоскостью.

Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника.

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом, пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок.

Если плоскости пересекаются по прямой, то прямую называют следом одной из этих плоскостей на другой.

В общем случае секущая плоскость многогранника пересекает плоскость каждой его грани (а также любую другую секущую плоскость этого многогранника). Она пересекает и каждую из прямых, на которых лежат ребра многогранника.

Прямую, по которой секущая плоскость пересекает плоскость какой-либо грани многогранника, называют следом секущей плоскости на плоскости этой грани, а точку, в которой секущая плоскость пересекает прямую, содержащую какое – либо ребро многогранника, называют следом секущей плоскости на этой прямой. Эта точка является и следом прямой на секущей плоскости. Если секущая плоскость пересекает непосредственно грань многогранника, то можно говорить о следе секущей плоскости на грани, и, аналогично, о следе секущей плоскости на ребре многогранника, то есть о следе ребра на секущей плоскости.

Так как прямая однозначно определяется двумя точками, то для нахождения следа секущей плоскости на любой другой плоскости и, в частности, на плоскости любой грани многогранника, достаточно построить две общие точки плоскостей

Для построения следа секущей плоскости, а также для построения сечения многогранника этой плоскостью, должен быть задан не только многогранник, но и секущая плоскость. А построение плоскости сечения проходит в зависимости от задания этой плоскости. Основными способами задания плоскости, и в частности секущей плоскости, являются следующие:

    тремя точками не лежащих на одной прямой;

    прямой и не лежащей на ней точкой;

    двумя параллельными прямыми;

    двумя пересекающимися прямыми;

    точкой и двумя скрещивающимися прямыми;

Возможны и другие способы задания секущей плоскости.

Поэтому все способы построения сечений многогранников можно разделить на методы.

Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Существует три основных метода построения сечений многогранников:

    Аксиоматический метод:

    Метод следов.

    Комбинированный метод.

    Координатный метод.

Заметим , что метод следов и метод вспомогательных сечений являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

    построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;

    построение сечения, проходящего через заданную прямую параллельно, другой заданной прямой;

    построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;

    построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;

    построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

Основными действиями, составляющие методы построения сечений, являются нахождение точки пересечения прямой с плоскостью, построения линии пересечения двух плоскостей, построение прямой параллельной плоскости, перпендикулярной плоскости. Для построения прямой пересечения двух плоскостей обычно находят две ее точки и проводят через них прямую. Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную. Тогда искомая точка получается в пересечении найденной прямой с данной.

Рассмотрим отдельно перечисленные нами методы построения сечений многогранников:

Метод следов.

Метод следов основывается (операеться) на аксиомах стереометрии, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют основным следом секущей плоскости . Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.

Отметим, что при построении основного следа секущей плоскости используется следующее утверждение.

Если точки принадлежат секущей плоскости и не лежат на одной прямой, а их проекция (центральными или параллельными) на плоскость, выбранную в качестве основной, являются соответственно точки то точки пересечения соответственных прямых, то есть точки и лежат на одной прямой (рис.1, а, б).

рис.1.а рис.1.б

Эта прямая является основным следом секущей плоскости. Так как точки лежат на основном следе, то для его построения достаточно найти две точки из этих трех.

Метод вспомогательных сечений.

Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Комбинированный метод

Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Координатный метод построения сечений.

Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.

Заметим , что это способ построения сечения многогранника приемлем для компьютера, так как он связан с большим объемом вычислений и поэтому этот метод целесообразно реализовать с помощью ЭВМ.

Наша основная задача будет состоять в построении сечения многогранника с плоскостью, т.е. в построении пересечения этих двух множеств.

Построение сечений многогранников

Прежде всего заметим, что сечение выпуклого многогранника есть выпуклый плоский многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многогранника, а стороны с его гранями.

Примеры построения сечений:

Способы задания сечения весьма разнообразны. Наиболее распространенным из них является способ задания секущей плоскости тремя точками, не лежащими на одной прямой.

Пример 1. Для параллелепипеда ABCDA 1 B 1 C 1 D 1 . Построить сечение проходящее через точки M, N, L.

Решение:

Соединим точки M и L, лежащие в плоскости AA 1 D 1 D.

Пересечем прямую ML (принадлежащую сечению) с ребром A 1 D 1 1 D 1 D. Получим точку X 1 .

Точка X1 лежит на ребре A 1 D 1 , а значит и плоскости A 1 B 1 C 1 D 1 , соединим ее сточкой N, лежащей в этой же плоскости.

X 1 N пересекается с ребром A 1 B 1 в точке К.

Соединим точки K и M, лежащие в одной плоскости AA 1 B 1 B.

Найдем прямую пересечения плоскости сечения с плоскостью DD 1 C 1 C:

Пересечем прямую ML (принадлежащую сечению) с ребром DD 1 , они лежат в одной плоскости AA 1 D 1 D, получим точку X 2 .

Пересечем прямую KN (принадлежащую сечению) с ребром D 1 C 1 , они лежат в одной плоскости A 1 B 1 C 1 D 1 , получим точку X3;

Точки X2 и X3 лежат в плоскости DD 1 C 1 C. Проведем прямую X 2 X 3 , которая пересечет ребро C 1 C в точке T, а ребро DC в точке P. И соединим точки L и P, лежащие в плоскости ABCD.

Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника, что и мы сделали. MKNTPL - искомое сечение.

Заметим. Эту же самую задачу на построение сечения, можно решить воспользуевавшийся свойством параллельных плоскостей.

Из выше сказанного можно составить алгоритм (правило) решения задач, данного типа.

Правила построения сечений многогранников:

    1. проводим прямые через точки, лежащие в одной плоскости;

      ищем прямые пересечения плоскости сечения с гранями многогранника, для этого:

Пример 2. D L , M

Решим аксиоматическим методом:

Проведем вспомогательную плоскость DKM , которая пересекает ребра АВ и ВС в точках Е и F (ход решение на рис 2.). Построим «след» КМ плоскости сечения на этой вспомогательной плоскости, найдем точку пересечения КМ и Е F – точку Р. Точка Р, как и L , лежит в плоскости АВС, и можно провести прямую, по которой плоскость сечения пересекает плоскость АВС(«след» сечения в плоскости АВС).

Пример 3. На ребрах AB и AD пирамиды MABCD зададим соответственно точки P и Q - середины этих ребер, а на ребре MC зададим точку R. Построим сечение пирамиды плоскостью, проходящей через точки P, Q и R.

Решение проведем комбинированным методом:

1). Ясно, что основным следом плоскости PQR является прямая PQ.

2). Найдем точку К, в которой плоскость МАС пересекает прямую PQ. Точки К и R принадлежат и плоскости PQR, и плоскости MAC. Поэтому, проведя прямую KR, мы получим линию пересечения этих плоскостей.

3). Найдем точку N=AC BD, проведем прямую MN и найдем точку F=KR MN.

4). Точка F является общей точкой плоскостей PQR и MDB, то есть эти плоскости пересекаются по прямой, проходящей через точку F. Вместе с тем так как PQ - средняя линия треугольника ABD, то PQ параллена BD, то есть прямая PQ параллельна и плоскости MDB. Тогда плоскость PQR, проходящая через прямую PQ, пересекает плоскость MDB по прямой, параллельной прямой PQ, то есть параллельной и прямой BD. Поэтому в плоскости MDB через точку F проведем прямую, параллельную прямой BD.

5). Дальнейшие построения понятны из рисунка. В итоге получаем многоугольник PQD"RB" - искомое сечение

Рассмотрим сечения призмы для простоты, то есть удобства логических размышлений рассмотрим сечения куба (рис.3.а):

Рис. 3.а

Сечения призмы плоскостями, параллельными боковым ребрам, является параллелограммами. В частности, параллелограммами являются диагональные сечения (рис. 4).

Опр. Диагональным сечением призмы называется сечение плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Многоугольник, получающийся при диагональном сечении призмы, является параллелограммом. Вопрос о числе диагональных сечений n -угольной призмы труднее, чем вопрос о числе диагоналей. Сечений будет столько же сколько диагоналей у основания. Мы знаем, что у выпуклой призмы в основаниях – выпуклые многоугольники, а у выпуклого n -угольника диагоналей. И так можно говорить, что диагональных сечений вдвое меньше, чем диагоналей.

Заметим: При построении сечений параллелепипеда на рисунке следует учитывать тот факт, что если секущая плоскость пересекает две противоположные грани по каким – то отрезкам, то эти отрезки параллельны «по свойству параллелепипеда т.е. противоположные грани параллелепипеда параллельны и равны.»

Дадим ответы на часто возникающие вопросы:

    Какие многоугольники получаются в сечении куба плоскостью?

«треугольник, четырехугольник, пятиугольник, шестиугольник ».

    Может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник?

«не могут».

3)Возникает вопрос чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника .

Пример 3. Построить сечение призмы A 1 B 1 C 1 D 1 ABCD плоскостью, проходящей через три точки M, N, K.

Рассмотрим случай расположения точек M, N, K на поверхности призмы (рис. 5).

Рассмотрим случай: В данном случае очевидно, что M1 = B1.

Построение:

Пример 4. Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.6)).

Решение:

Рис. 6

Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два не соседних боковых ребра пирамиды.

Пример 4. Построить сечение пирамиды АВС D плоскостью, проходящей через точки К, L , M .

Решение:


    1. Проведем еще одну вспомогательную плоскость DCK и построим точку пересечения В L и D К – точку Е. Эта точка принадлежит обеим вспомогательным плоскостям (рис. 7, б);

      Найдем точку пересечения отрезков LM и ЕС (эти отрезки лежат в плоскости BLC , рис.7, в) – точку F . Точка F лежит в плоскости сечения и в плоскости DCK ;

      Проведем прямую KF и найдем точку пересечения этой прямой с DC – точку N (точка N принадлежит сечению). Четырехугольник KLNM – искомое сечение.

Этот же пример решим по другому .

Допустим что по точкам К, L , и М построено сечение KLNM (рис. 7). Обозначим через F точку пересечения диагоналей четырехугольника KLNM . Проведем прямую DF и обозначим через F 1 ее точку пересечения с гранью АВС. Точка F 1 совпадает с точкой пересечения прямых АМ и СК (F 1 одновременно принадлежит плоскостям АМ D и D СК). Точку F 1 легко построить. Далее строим точку F как точку пересечения DF 1 и LM . Далее находим точку N .

Рассмотренный прием называют методом внутреннего проектирования . (Для нашего случая речь идет о центральном проектировании. Четырехугольник K МСА есть проекция четырехугольника KMNL из точки D . При этом точка пересечения диагоналей KMNL – точка F – переходит в точку пересечения диагоналей четырехугольника K МСА – точку F 1 .

Площадь сечения многогранника.

Задача на вычисление площади сечения многогранника обычно решается в несколько этапов. Если в задаче говориться, что сечение построено (или что секущая плоскость проведена и т.п.), то на первом этапе решения выясняют вид фигуры полученной в сечении.

Это необходимо сделать, чтобы выбрать соответствующую формулу для вычисления площади сечения. После того как вид фигуры, полученной в сечении, выяснен и выбрана формула для подсчета площади этой фигуры, переходят непосредственно к вычислительной работе.

В некоторых случаях может оказаться проще, если, не выясняя вида фигуры, полученной в сечении, перейти сразу к вычислениям ее площади по формуле, которая следует из теоремы.

Теорема о площади ортогональной проекции многоугольника: площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции: .

Справедлива формула для вычисления площади сечения: где это площадь ортогональной проекции фигуры, полученной в сечении, аэто угол между секущей плоскостью и плоскостью, на которую фигура спроектирована. При таком ходе решения необходимо построить ортогональную проекцию фигуры, полученной в сечении, и подсчитать

Если в условии задачи говориться, что сечение требуется построить и найти площадь полученного сечения, то на первом этапе следует обосновано выполнить построение заданного сечения, и затем, естественно, определить вид фигуры, полученной в сечении, и т.д.

Отметим следующий факт: так как строятся сечения выпуклых многогранников, то многоугольник сечения будет тоже выпуклым, поэтому его площадь можно найти разбиением на треугольники, то есть площадь сечения равна сумме площадей треугольников из которых оно составлено.

Задача 1.

правильная треугольная пирамида со стороной основания равной и высотой равной Постройте сечение пирамиды плоскостью, проходящей через точки, где – середина стороны, и найдите его площадь (рис.8).

Решение.

Сечением пирамиды является треугольник. Найдем его площадь.

Так как основание пирамиды – равносторонний треугольник и точка – середина стороны, то является высотой и тогда, .

Площадь треугольника можно найти:

Задача 2.

Боковое ребро правильной призмы равно стороне основания. Построить сечения призмы плоскостями, проходящими через точку A , перпендикулярно прямой Если найти площадь полученного сечения призмы.

Решение.

Построим заданное сечение. Сделаем это из чисто геометрических соображений, например, следующим образом.

В плоскости проходящей через заданную прямую и заданную точку проведем через эту точку прямую, перпендикулярную прямой (рис. 9). Воспользуемся с этой целью тем, что в треугольнике то есть его медиана является и высотой этого треугольника. Таким образом, прямая.

Через точку проведем еще одну прямую, перпендикулярную прямой. Проведем ее, например, в плоскости, проходящей через прямую. Ясно, что этой прямой является прямая

    Итак, построены две пересекающиеся прямые, перпендикулярные прямой. Этими прямимы определяется плоскость, проходящая через точку перпендикулярно прямой то есть задана секущая плоскость.

    Построим сечение призмы этой плоскостью. Заметим, что так как, то прямая параллельна плоскости. Тогда плоскость, проходящая через прямую, пересекает плоскость по прямой, параллельной прямой, то есть и прямой. Проведем через точку прямую и полученную точку соединим точкой.

Четырехугольник заданное сечение. Определим его площадь.

Понятно что четырехугольник является прямоугольником, то есть его площадь

рис. 9

ПОСТРОЕНИЕ СЕЧЕНИЙ И РАЗРЕЗОВ НА ЧЕРТЕЖАХ

Формирование чертежа детали производится путем последовательного добавления необходимых проекций, разрезов и сечений. Первоначально создается произвольный вид с указанной пользователем модели, при этом задается ориентация модели, наиболее подходящая для главного вида. Далее по этому и следующим видам создаются необходимые разрезы и сечения.

Главный вид (вид спереди) выбирается таким образом, чтобы он давал наиболее полное представление о формах и размерах детали.

Разрезы на чертежах

В зависимости от положения секущей плоскости различают следующие виды разрезов:

А) горизонтальные, если секущая плоскость располагается параллельно горизонтальной плоскости проекций;

Б) вертикальные, если секущая плоскость перпендикулярна горизонтальной плоскости проекций;

В) наклонные - секущая плоскость наклонена к плоскостям проекций.

Вертикальные разрезы подразделяются на:

· фронтальные - секущая плоскость параллельна фронтальной плоскости проекций;

· профильные - секущая плоскость параллельна профильной плоскости проекций.
В зависимости от числа секущих плоскостей разрезы бывают:

· простые - при одной секущей плоскости (рис.107);

· сложные - при двух и более секущих плоскостях (рис.108)
Стандартом предусмотрены следующие виды Сложных разрезов:

· ступенчатые, когда секущие плоскости располагаются параллельно (рис.108 а) и ломаные - секущие плоскости пересекаются (рис.108 б)

Рис.107 Простой разрез

А) б)

Рис.108 Сложные разрезы

Обозначение разрезов

В случае, когда в простом разрезе секущая плоскость совпадает с плоскостью симметрии предмета, разрез не обозначается (рис.107). Во всех остальных случаях разрезы обозначаются прописными буквами русского алфавита, начиная с буквы А, например А-А.

Положение секущей плоскости на чертеже указывают линией сечения – утолщенной разомкнутой линией. При сложном разрезе штрихи проводят также у перегибов линии сечения. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны находиться на расстоянии 2-3 мм от наружных концов штрихов. С наружной стороны каждой стрелки, указывающей направление взгляда, наносят одну и ту же прописную букву.

Для обозначения разрезов и сечений в системе КОМПАС используется одна и та же кнопка Линия разреза, расположенная на странице Обозначения (рис.109).

Рис.109 Кнопка Линия разреза

Соединение половины вида с половиной разреза

Если вид и разрез представляют собой симметричные фигуры (рис.110), то можно соединять половину вида и половину разреза, разделяя их штрихпунктирой тонкой линией, являющейся осью симметрии. Часть разреза обычно располагают справа от оси симметрии, разделяющей часть вида с частью разреза, или снизу от оси симметрии. Линии невидимого контура на соединяемых частях вида и разреза обычно не показываются. Если с осевой линией, разделяющий вид и разрез, совпадает проекция какой-либо линии, например, ребра гранной фигуры, то вид и разрез разделяются сплошной волнистой линией, проводимой левее оси симметрии, если ребро лежит на внутренней поверхности, или правее, если ребро наружное.

Рис. 110 Соединение части вида и разреза

Построение разрезов

Построение разрезов в системе КОМПАС изучим на примере построения чертежа призмы, задание для которого изображено на рис.111.

Последовательность построения чертежа следующая:

1. По заданным размерам построим твердотельную модель призмы (рис.109 б). Сохраним модель в памяти компьютера в файле с именем «Призма».

Рис.112 Панель Линии

3. Для построения профильного разреза (рис.113) начертим линию разреза А-А на главном виде с помощью кнопки Линия разреза.


Рис.113 Построение профильного разреза

Направление взгляда и текст обозначения можно выбрать на панели управления командой внизу экрана (рис.114). Завершается построение линии разреза нажатием на кнопку Создать объект.

Рис.114 Панель управления командой построения разрезов и сечений

4. На панели Ассоциативные виды (рис.115) выберем кнопку Линия разреза, затем появившейся на экране ловушкой укажем линию разреза. Если все сделано верно (линия разреза должна быть обязательно построена в активном виде), то линия разреза окрасится в красный цвет. После указания линии разреза А-А на экране появится фантом изображения в виде габаритного прямоугольника.

Рис.115 Панель Ассоциативные виды

С помощью переключателя Разрез/сечение на Панели свойств выбирается тип изображения – Разрез (рис.116) и масштаб отображаемого разреза.

Рис.116 Панель управления командой построения разрезов и сечений

Профильный разрез построится автоматически в проекционной связи и со стандартным обозначением. При необходимости проекционную связь можно отключать переключателем Проекционная связь (рис.116). Для настройки параметров штриховки, которая будет использована в создаваемом разрезе (сечении) используется элементы управления на вкладке Штриховка.

Рис.117 Построение горизонтального разреза Б-Б и сечения В-В

Если выбранная секущая плоскость при построении разреза совпадает с плоскостью симметрии детали, то в соответствии со стандартом такой разрез не обозначается. Но если просто стереть обозначение разреза, то из-за того, что вид и разрез в памяти компьютера связаны между собой, то сотрется и весь разрез. Поэтому для того, чтобы удалить обозначение, вначале следует разрушить связь вида и разреза. Для этого щелчком левой кнопки мыши выделяется разрез, а затем щелчком правой кнопки мыши вызывается контекстное меню, из которого выбирается пункт Разрушить вид (рис.97). Теперь обозначение разреза можно удалить.

5. Для построения горизонтального разреза проведем через нижнюю плоскость отверстия на виде спереди линию разреза Б-Б. Предварительно обязательно двумя щелчками левой кнопки мыши вид спереди следует сделать текущим. Затем строится горизонтальный разрез (рис.117).

6. При построении фронтального разреза совместим часть вида и часть разреза, т.к. это симметричные фигуры. На линию разделяющую вид и разрез проецируется наружное ребро призмы, поэтому разграничим вид и разрез сплошной тонкой волнистой линией, проводимой правее оси симметрии, т.к. ребро наружное. Для построения волнистой линии используется кнопка Кривая Безье, расположенной на панели Геометрия, вычерчиваемая стилем Для линии обрыва (рис.118). Последовательно указывайте точки, через которые должна пройти кривая Безье. Закончить выполнение команды следует нажатием на кнопку Создать объект.

Рис.118 Выбор стиля линии для обрыва

Построение сечений

Сечением называется изображения предмета, которые получаются при мысленном рассечении предмета плоскостью. На сечении показывают только то, что расположено в секущей плоскости.

Положение секущей плоскости, с помощью которой образуется сечение, на чертеже указывают линией сечения, так же как для разрезов.

Сечения в зависимости от расположения их на чертежах разделяются на вынесенные и наложенные. Вынесенные сечения располагаются чаще всего на свободном поле чертежа и обводятся основной линией. Наложенные сечения располагают непосредственно на изображении предмета и обводят тонкими линиями (рис.119).

Рис.119 Построение сечений

Рассмотрим последовательность построения чертежа призмы с вынесенным наклонным сечением Б-Б (рис.117).

1. Сделаем вид спереди активным двойным щелчком левой кнопкой мыши по виду и начертим линию разреза с помощью кнопки Линия разреза. Выберем текст надписи В-В.

2. С помощью кнопки Линия разреза, расположенной на панели Ассоциативные виды (рис.115), появившейся ловушкой укажем линию секущей плоскости В-В. С помощью переключателя Разрез/сечение на Панели свойств следует выбрать тип изображения – Сечение (рис.116), масштаб отображаемого сечения выбирается из окна Масштаб.

Построенное сечение располагается в проекционной связи, что ограничивает его перемещение по чертежу, но проекционную связь можно отключать с помощью кнопки Проекционная связь.

На готовом чертеже следует прочертить осевые линии, при необходимости проставить размеры.

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

С самого раннего детства мы сталкиваемся с сечениями. Режем хлеб, колбасу и другие продукты, обстругиваем палочку или карандаш ножом. Секущей плоскостью во всех этих случаях является плоскость ножа. Сечения (срезы кусочков) оказываются различными.

Сечение выпуклого многогранника есть выпуклый многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многоугольника, а стороны- линиями пересечения секущей плоскости с гранями.

Для построения прямой пересечения двух плоскостей достаточно найти две общие точки этих плоскостей и провести через них прямую. Это основано на следующих утверждениях:

1.если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости;

2.если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Как я уже сказал ппостроение сечений многогранников можно осуществлять на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей. Вместе с тем, существуют определенные методы построения плоских сечений многогранников. Наиболее эффективными являются следующие три метода:

Метод следов

Метод внутреннего проектирования

Комбинированный метод.

В изучении геометрии и, в особенности, тех её разделов, где рассматриваются изображения геометрических фигур, изображения геометрических фигур помогают использования компьютерных презентаций. С помощью компьютера многие уроки геометрии становятся более наглядной и динамичной. Аксиомы, теоремы, доказательства, задачи на построения, задачи на построения сечений можно сопровождать последовательными построениями на экране монитора. Сделанные с помощью компьютера чертежи можно сохранять и вставлять их в другие документы.

Хочу показать несколько слайдов по теме: «Построения сечений в геометрических телах»

Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную прямую. Тогда искомая точка является точкой пересечения найденной прямой с данной. Проследим это на следующих слайдах.

Задача 1.

На ребрах тетраэдра DABC отмечены две точки М и N; М GAD, N б DC. Укажите точку пересечения прямой MN с плоскостью основания.

Решение: для того, чтобы найти точку пересечения прямой MN с плоскостью

основания мы продолжим АС и отрезок MN. Отметим точку пересечения этих прямых через X. Точка X принадлежит прямой MN и грани АС, а АС лежит в плоскости основания, значит точка X тоже лежит в плоскости основания. Следовательно, точка X есть точка пересечения прямой MN с плоскостью основания.

Рассмотрим вторую задачу. Немного усложним его.

Задача 2.

Дан тетраэдр DABC точки М и N, где М € DA, N С (DBC). Найти точку пересечения прямой MN с плоскостью ABC .

Решение: точка пересечения прямой MN с плоскостью ABC должна лежать в плоскости, которая содержит прямую MN и в плоскости основания. Продолжим отрезок DN до точки пересечения с ребром DC. Точку пересечения отметим через Е. Продолжим прямую АЕ и MN до точки их пересечения. Отметим X. Точка X принадлежит MN, значит она лежит на плоскости которая содержит прямую MN и X принадлежит АЕ, а АЕ лежит на плоскости ABC. Значит X тоже лежит в плоскости ABC. Следовательно X и есть точка пересечения прямой MN и плоскости ABC.

Усложним задачу. Рассмотрим сечение геометрических фигур плоскостями, проходящими через три данные точки.

Задача 3

На ребрах AC, AD и DB тетраэдра DABC отмечены точки М, N и Р. Построить сечение тетраэдра плоскостью MNP.

Решение: построим прямую, по которой плоскость MNP. Пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезок АВ и NP. Точку пересечения отметим через X, которая и будет второй общей точкой плоскости MNP и ABC. Значит эти плоскости пересекаются по прямой MX . MX пересекает ребро ВС в некоторой точке Е. Так как Е лежит на MX, а MX прямая принадлежащей плоскости MNP, значит РЕ принадлежит MNP. Четырёхугольник MNPE искомое сечение.

Задача 4

Построим сечение прямой призмы АВСА1В1С1 плоскостью проходящей через точки P, Q ,R, где R принадлежит (AA 1C 1C ), Р принадлежит В 1С1,

Q принадлежит АВ

Решение: Все три точки P,Q,R лежат в разных гранях, поэтому построить линию пересечения секущей плоскости с какой- либо гранью призмы мы пока не можем. Найдем точку пересечения PR с ABC. Найдем проекции точек Р и R на плоскость основания PP1 перпендикулярно ВС и RR1 перпендикулярна АС. Прямая P1R1 пересекается с прямой PR в точке X. X точка пересечения прямой PR с плоскостью ABC. Она лежит в искомой плоскости К ив плоскости основания, как и точка Q. XQ- прямая пересекающая К с плоскостью основания. XQ пересекает АС в точке К. Следовательно, KQ отрезок пересечения плоскости Х с гранью ABC. К и R лежат в плоскости Х и в плоскости грани АА1С1С. Проведем прямую KR и точку пересечения с A1Q отметим Е. КЕ является линией пересечения плоскости Х с этой гранью. Найдем линию пересечения плоскости Х с плоскостью граней BB1A1A. КЕ пересекается с А1А в точке У. Прямая QY есть линия пересечения секущей плоскости с плоскостью AA1B1B. FPEKQ- искомое сечение.

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.


Top