Связан с эндоплазматической сетью. Строение клетки

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум(ЭР), представляет собой систему, состоящую из мембранных цистерн, каналов и пузырьков. Около половины всех клеточных мембран приходится на ЭР.

Морфофункционально ЭПС дифференцирована на 3 отдела: шероховатая (гранулярная), гладкая (агранулярная) и промежуточная. На гранулярной ЭПС находятся рибосомы (PC), гладкая и промежуточная лишены их. Гранулярный ЭР в основном представлен цистернами, а гладкий и промежуточный - в основном каналами. Мембраны цистерн, каналов и пузырьков могут переходить друг в друга. ЭР содержит полужидкий матрикс, характеризующийся особым химическим составом.

Функции ЭР:

  • компартментализации;
  • синтетическая;
  • транспортная;
  • детоксикации;
  • регуляция концентрации ионов кальция.

Функция компартментализации связана с делением клетки на отсеки (компартменты) с помощью мембран ЭР. Подобное деление позволяет изолировать часть содержимого цитоплазмы от гиалоплазмы и дает возможность клетке разобщить и локализовать определенные процессы, а также заставить протекать их более эффективно и направленно.

Синтетическая функция. На гладкой ЭР синтезируются практически все липиды, за исключением двух митохондриальных липидов, синтез которых происходит в самих митохондриях. На мембранах гладкого ЭР синтезируется холестерол (у человека в сутки до 1 г, в основном в печени; при поражении печени количество холестерола в крови падает, изменяется форма и функции эритроцитов и развивается анемия).
На шероховатом ЭР происходит синтез белков:

  • внутренней фазы ЭР, комплекса Гольджи, лизосом, митохондрий;
  • секреторных белков, например гормонов, иммуноглобулинов;
  • мембранных белков.

Синтез белков начинается на свободных рибосомах в цитозоле. После химических преобразований белки упаковываются в мембранные пузырьки, которые отщепляется от ЭР и транспортируются в другие районы клетки, например, в комплекс Гольджи.
Синтезированные на ЭР белки условно можно подразделить на два потока:

  • интернальные, которые остаются в ЭР;
  • экстернальные, которые не остаются в ЭР.

Интернальные белки, в свою очередь, также можно разделить на два потока:

  • резидентные, не уходящие из ЭР;
  • транзитные, покидающие ЭР.

В ЭР происходит детоксикация вредных веществ , попавших в клетку или образовавшихся в самой клетке. Большинство вредных веществ являются
гидрофобными веществами, которые поэтому не могут выводиться из организма с мочой. В мембранах ЭР есть белок цитохром-Р450, который превращает гидрофобные вещества в гидрофильные, и после этого они удаляются с мочой из организма.

Немного истории

Клетка считается наименьшей структурной единицей любого организма, однако и она также из чего-то состоит. Одним из её компонентов и является эндоплазматическая сеть. Более того, ЭПС является обязательной составляющей любой клетки в принципе (кроме некоторых вирусов и бактерий). Открыта она американским учёным К. Портером ещё в 1945 году. Именно он заметил системы канальцев и вакуолей, которые как бы скопились вокруг ядра. Также Портером было замечено, что размеры ЭПС в клетках разных существ и даже органов и тканей одного организма не аналогичны друг другу. Он пришёл к выводу о том, что это связано с функциями той или иной клетки, степенью её развития, а также стадией дифференцировки. Например, у человека очень хорошо развита ЭПС в клетках кишечника, слизистых и надпочечников.

Понятие

ЭПС - система канальцев, трубочек, пузырьков и мембран, которые расположены в цитоплазме клетки.

Эндоплазматическая сеть: строение и функции

Строение

Во-первых, это транспортная функция. Как и цитоплазма, эндоплазматическая сеть обеспечивает обмен веществ между органоидами. Во-вторых, ЭПС совершает структурирование и группировку содержимого клетки, разбивая его на определённые секции. В-третьих, важнейшей функцией является синтез белка, который осуществляется в рибосомах шероховатой эндоплазматической сети, а также синтез углеводов и липидов, который происходит на мембранах гладкой ЭПС.

Строение ЭПС

Всего существует 2 типа эндоплазматической сети: зернистая (шероховатая) и гладкая. Функции, выполняемые данной составляющей, зависят именно от типа самой клетки. На мембранах гладкой сети находятся отделы, вырабатывающие ферменты, которые затем участвуют в обмене веществ. Шероховатая эндоплазматическая сеть содержит на своих мембранах рибосомы.

Краткая информация о других наиболее важных составляющих клетки

Цитоплазма: строение и функции

Изображение Строение Функции

Является жидкостью в клетке. Именно в ней находятся все органоиды (в том числе и аппарат Гольджи, и эндоплазматическая сеть, и многие другие) и ядро с его содержимым. Относится к обязательным компонентам и не является органоидом как таковым. Основной функцией является транспортная. Именно благодаря цитоплазме происходит взаимодействие всех органоидов, их упорядочение (складываются в единую систему) и протекание всех химических процессов.

Клеточная мембрана: строение и функции

Изображение Строение Функции

Молекулы фосфолипидов и белков, образуя два слоя, составляют мембрану. Она представляет собой тончайшую плёнку, окутывающую всю клетку. Неотъемлемым ее компонентом также являются полисахариды. А у растений снаружи она ещё покрыта тонким слоем клетчатки.

Основной функцией клеточной мембраны является ограничение внутреннего содержимого клетки (цитоплазмы и всех органоидов). Поскольку в ней содержатся мельчайшие поры, она обеспечивает транспорт и обмен веществ. Может также являться катализатором при осуществлении каких-то химических процессов и рецептором при возникновении внешней опасности.

Ядро: строение и функции

Изображение Строение Функции

Имеет либо овальную, либо шаровидную форму. Содержит в себе особые молекулы ДНК, которые в свою очередь несут наследственную информацию всего организма. Само ядро снаружи покрыто особой оболочкой, в которой есть поры. Содержит также ядрышки (небольшие тельца) и жидкость (сок). Вокруг этого центра и располагается эндоплазматическая сеть.

Именно ядром регулируются абсолютно все процессы, происходящие в клетке (обмен веществ, синтез и т.д.). И именно этот компонент является основным носителем наследственной информации всего организма.

В ядрышках происходит синтез белка и молекул РНК.

Рибосомы

Являются органоидами, обеспечивающими основной синтез белка. Могут находиться как в свободном пространстве цитоплазмы клетки, так и в комплексе с другими органоидами (эндоплазматическая сеть, например). Если рибосомы расположены на мембранах шероховатой ЭПС (находясь на наружных стенках мембран, рибосомы создают шероховатости), эффективность синтеза белка возрастает в несколько раз. Это было доказано многочисленными научными экспериментами.

Комплекс Гольджи

Органоид, состоящий из некоторых полостей, постоянно выделяющих различных размеров пузырьки. Накопленные вещества также использует для нужд клетки и организма. Комплекс Гольджи и эндоплазматическая сеть нередко расположены рядом.

Лизосомы

Органоиды, окружённые специальной мембраной и выполняющие пищеварительную функцию клетки, называются лизосомами.

Митохондрии

Органоиды, окружённые несколькими мембранами и выполняющие энергетическую функцию, то есть обеспечивающие синтез молекул АТФ и распределяющие полученную энергию по клетке.

Пластиды. Виды пластидов

Хлоропласты (функция фотосинтеза);

Хромопласты (накапливание и сохранение каротиноидов);

Лейкопласты (накапливание и хранение крахмала).

Органоиды, предназначенные для передвижения

Они также совершают какие-то движения (жгутики, реснички, длинные отростки и т.п.).

Клеточный центр: строение и функции

  • 5. Световой микроскоп, его основные характеристики. Фазово-контрастная, интерференционная и ультрафиолетовая микроскопия.
  • 6. Разрешающая способность микроскопа. Возможности световой микроскопии. Изучение фиксированных клеток.
  • 7. Методыавторадиографии, клеточных культур, дифференциального центрифугирования.
  • 8.Метод электронной микроскопии, многообразие его возможностей. Плазматическая мембрана, особенности строения и функций.
  • 9.Поверхностный аппарат клетки.
  • 11.Клеточная стенка растений. Строение и функции – оболочки клеток растений, животных и прокариот, сравнение.
  • 13. Органеллы цитоплазмы. Мембранные органоиды, их общая характеристика и классификация.
  • 14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.
  • 15. Комплекс Гольджи. Строение и функции.
  • 16. Лизасомы, функциональное многообразие, образование.
  • 17. Вакулярный аппарат растительных клеток, компоненты и особенности организации.
  • 18. Митохондрии. Строение и функции митохондрий клетки.
  • 19. Функции митохондрий клетки. Атф и его роль в клетке.
  • 20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
  • 21. Многообразие пластид, возможные пути их взаимопревращения.
  • 23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
  • 24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
  • 25. Ядро в клетках растений и животных, строение, функции, взаимосвязь ядра и цитоплазмы.
  • 26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.
  • 27. Химический состав хромосом: Днк и белки.
  • 28. Уникальные и повторяющиеся последовательности днк.
  • 29.Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.
  • 30. Виды рнк, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: днк-рнк-белок. Роль компонентов в ее реализации.
  • 32. Митотические хромосомы. Морфологическая организация и функции. Кариотип (на примере человека).
  • 33. Репродукция хромосом про- и эукариот, взаимосвязь с клеточным циклом.
  • 34. Политенные и хромосомы типа ламповых щеток. Строение,функции, отличие от метафазных хромосом.
  • 36. Ядрышко
  • 37. Ядерная оболочка строение,функции,роль ядра при взаимодействии с цитоплазмой.
  • 38.Клеточный цикл, периоды и фазы
  • 39. Митоз как основной тип деления.Открытый и закрытый митоз.
  • 39. Стадии митоза.
  • 40.Митоз,общие черты и отличия.Особенности митоза у растений и у животных:
  • 41.Мейоз значение, характеристика фаз, отличие от митоза.
  • 14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.

    Эндоплазматический ретикулум (ЭПС) - система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

    В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

    Шероховатая ЭПС. На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называетсяэргастоплазмой.

    Гладкая ЭПС. На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция.

    15. Комплекс Гольджи. Строение и функции.

    Комплекс Гольджи - это мембранная структура, присущая любой эукариотической клетке. Комплекс Гольджи состоит из уплощенных цистерн, как правило, собранных в стопки (диктиосомы). Цистерны не изолированы, а соединены между собой системой трубочек. Первую от ядра цистерну называют цис-полюсом комплекса Гольджи, а последнюю, соответственно, транс-полюсом. Количество цистерн в разных клетках разных организмов может варьировать, но в целом строение комплекса Гольджи у всех эукариот примерно одинаково. В секреторных клетках он развит особенно сильно. Функции комплекса Гольджи заключаются в переносе белков к месту назначения, а также их гликозилировании, дегликозилировании и модификации олигосахаридных цепочек.

    Комплексу Гольджи свойственна функциональная анизотропия. Новосинтезированные белки транспортируются из эндоплазматического ретикулума к цис-полюсу диктиосом с помощью везикул. Далее они постепенно продвигаются по направлению к транс-полюсу, подвергаясь поэтапным модификациям (по мере удаления от ядра состав ферментных систем в цистернах меняется). И, наконец, белки отправляются к своему окончательному месту назначения в везикулах, отпочковывающихся от транс-полюса. Комплекс Гольджи обеспечивает транспорт белков в три компартмента: к лизосомам (а также центральной вакуоли растительной клетки и сократительным вакуолям простейших), к клеточной мембране и в межклеточное пространство. Направление переноса белка определяется специальными гликозидными метками. Например, маркер лизосомальных ферментов - манноза-6-фосфат. Созревание и транспорт митохондриальных, ядерных и хлоропластных белков происходит без участия комплекса Гольджи: они синтезируются свободными рибосомами после чего попадают непосредственно в цитозоль. Важная функция комплекса Гольджи - синтез и модификация углеводного компонента гликопротеинов, протеогликанов и гликолипидов. В нем же синтезируются и многие полисахариды, например гемицеллюлоза и пектин у растений. Цистерны комплекса Гольджи содержат целый набор различных гликозилтрансфераз и гликозидаз. Также в них происходит сульфатирование углеводных остатков.

    Клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

    Схематическое представление клеточного ядра, эндоплазматического ретикулума и комплекса Гольджи.
    (1) Ядро клетки.
    (2) Поры ядерной мембраны.
    (3) Гранулярный эндоплазматический ретикулум.
    (4) Агранулярный эндоплазматический ретикулум.
    (5) Рибосомы на поверхности гранулярного эндоплазматического ретикулума.
    (6) Транспортируемые белки.
    (7) Транспортные везикулы.
    (8) Комплекс Гольджи.
    (9)
    (10)
    (11)

    История открытия

    Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

    Строение

    Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

    Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации . Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм , 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды , а также некоторое количество холестерина и сфинголипидов . В их состав также входят белки.

    Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция - осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

    Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

    Выделяют два вида ЭПР:

    • гранулярный эндоплазматический ретикулум
    • агранулярный (гладкий) эндоплазматический ретикулум

    На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом , которые отсутствуют на поверхности агранулярного ЭПР.

    Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

    Функции эндоплазматического ретикулума

    При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов . Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция , который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума - саркоплазматическая сеть .

    Функции агранулярного эндоплазматического ретикулума

    Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма . Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов , жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

    Синтез гормонов

    К гормонам , которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников . Клетки яичек и яичников , ответственные за синтез гормонов , содержат большое количество агранулярного эндоплазматического ретикулума.

    Накопление и преобразование углеводов

    Углеводы в организме накапливаются в печени в виде гликогена . Посредством гликолиза гликоген в печени трансформируется в глюкозу , что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

    Нейтрализация ядов

    Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

    Саркоплазматический ретикулум

    Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10 −3 моль , в то время как в цитозоле порядка 10 −7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.

    Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

    Функции гранулярного эндоплазматического ретикулума

    Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

    Синтез белков

    Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

    Синтез мембран

    Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

    Смотри также

    • Ретикулоны - белки эндоплазматического ретикулума.

    Wikimedia Foundation . 2010 .

      ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ, система мембран и каналов в ЦИТОПЛАЗМЕ клеток ЭУКАРИОТОВ (т. е. имеющих ядро) растений, животных, грибов. Служит для переноса вещества внутри клетки. Части эндоплазматической сети покрыты мельчайшими гранулами, носящими… … Научно-технический энциклопедический словарь

      - (эндоплазматический ретикулум), клеточный органоид; система канальцев, пузырьков и «цистерн», отграниченных мембранами. Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в… … Энциклопедический словарь

      эндоплазматическая сеть - endoplazminis tinklas statusas T sritis augalininkystė apibrėžtis Submikroskopinis ląstelės organoidas, sudarytas iš citoplazmoje išsiskaidžiusių ir tarpusavyje sudarančių sistemą kanalėlių ir pūslelių, atliekančių metabolitų transporto ląstelių… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

      - (ндо + (цито) плазма; син.: цитоплазматическая сеть, эндоплазматический ретикулу) органоид, представляющий собой расположенную в цитоплазме систему канальцев, вакуолей и цистерн, отграниченных мембранами; обеспечивает транспорт веществ в… … Большой медицинский словарь

      - (биол.) внутриклеточный органоид, представленный системой плоских цистерн, канальцев и пузырьков, ограниченных мембранами; обеспечивает главным образом передвижение веществ из окружающей среды в цитоплазму и между внутриклеточными… … Большая советская энциклопедия

      - (см. эндо... + плазма) иначе эргастоплазма внутриклеточный органоид, состоящий из полостей различной формы и величины (пузырьки, канальцы и цистерны), окруженных мембраной 2. Новый словарь иностранных слов. by EdwART, 2009 … Словарь иностранных слов русского языка

      - (эндоплазматический ретикулум), клеточный органоид; система канальцев, пузырьков и цистерн, отграниченных мембранами. Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт в в из окружающей среды в цитоплазму и… … Естествознание. Энциклопедический словарь

      эндоплазматическая сеть - см. эндоплазматический ретикулюм … Анатомия и морфология растений

    Органеллы общего значения. Эндоплазматическая сеть.

    Органеллы – постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего и специального значения.

    Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы . Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

    Функции эндоплазматической сети:

    1.Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

    2.Гладкая ЭПС участвует в синтезе липидов, углеводов.

    3.Транспорт органических веществ в клетку (по каналам ЭПС).

    4.Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

    Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

    Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез трех типов белков:



    1.Мембранные белки . Все белки плазмолеммы, мембран самой ЭПС и большинство белков других органоидов являются продуктами рибосом ЭПС.

    2.Секреторные белки . Эти белки попадают в полость ЭПС, а затем путем экзоцитоза выводятся из клетки.

    3.Внутриорганоидные белки . Эти белки локализуются и функционируют в полостях мембранных органоидов: самой ЭПС, комплекс Гольджи, лизосом, митохондрий. ЭПС участвует в образовании биомембран.

    В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

    ЭПС является универсальным органоидом эукариотических клеток. Нарушение структуры и функции ЭПС приводит к серьезным последствиям. ЭПС является местом формирования мембранных пузырьков со специализированными функциями (пероксисомы).

    
    Top