Наименьшее и наибольшее значения функции на отрезке. Как найти наибольшее значение функции

Пусть функция у = f (х) непрерывна на отрезке [a, b ]. Как известно, такая функция на этом отрезке достигает наибольшего и наименьшего значений. Эти значения функция может принять либо во внутренней точке отрезка [a, b ], либо на границе отрезка.

Для нахождения наибольшего и наименьшего значений функции на отрезке [a, b ] необходимо:

1)найти критические точки функции в интервале (a, b );

2)вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, то есть при x = а и х = b ;

4)из всех вычисленных значений функции выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке .

Находим критические точки:

Эти точки лежат внутри отрезка ; y (1) = ‒ 3; y (2) = ‒ 4; y (0) = ‒ 8; y (3) = 1;

в точке x = 3 и в точкеx = 0.

Исследование функции на выпуклость и точку перегиба.

Функция y = f (x ) называется выпуклойвверх на промежутке (a , b ) , если ее график лежит под касательной, проведенной в любой точке этого промежутка, и называется выпуклой вниз (вогнутой) , если ее график лежит над касательной.

Точка, при переходе через которую выпуклость сменяется вогнутостью или наоборот, называется точкой перегиба .

Алгоритм исследования на выпуклость и точку перегиба:

1. Найдеми критические точки второго рода, то есть точки в которых вторая производная равна нулю или не существует.

2. Нанести критические точки на числовую прямую, разбивая ее на промежутки. Найти знак второй производной на каждом промежутке; если , то функция выпуклая вверх, если, то функция выпуклая вниз.

3. Если при переходе через критическую точку второго рода поменяет знак и в этой точке вторая производная равна нулю, то эта точка ‒ абсцисса точки перегиба. Найти ее ординату.

Асимптоты графика функции. Исследование функции на асимптоты.

Определение. Асимптотой графика функции называется прямая , обладающая тем свойством, что расстояние от любой точки графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая называетсявертикальной асимптотой графика функции у = f (х) , если хотя бы один из односторонних пределов функции в этой точке равен бесконечности, то есть

где ‒ точка разрыва функции, то естьне принадлежит области определения.

Пример.

D (y ) = (‒ ∞; 2) (2; + ∞)

x = 2 ‒ точка разрыва.

Определение. Прямая у = A называется горизонтальной асимптотой графика функции у = f(х) при , если

Пример.

x

y

Определение. Прямая у = k х + b (k ≠ 0) называется наклонной асимптотой графика функции у = f (х) при , где

Общая схема исследования функций и построения графиков.

Алгоритм исследования функции у = f (х) :

1. Найти область определения функцииD (y ).

2. Найти (если это можно) точки пересечения графика с осями координат (при x = 0 и при y = 0).

3. Исследовать на четность и нечетность функции(y (x ) = y (x ) четность; y (x ) = y (x ) нечетность).

4. Найти асимптоты графика функции.

5. Найти интервалы монотонности функции.

6. Найти экстремумы функции.

7. Найти интервалы выпуклости (вогнутости) и точки перегиба графика функции.

8. На основании проведенных исследований построить график функции.

Пример. Исследовать функцию и построить ее график.

1) D (y ) =

x = 4 ‒ точка разрыва.

2) При x = 0,

(0; ‒ 5) ‒ точка пересечения с oy .

При y = 0,

3) y (x )= функция общего вида (ни четная, ни нечетная).

4) Исследуем на асимптоты.

а) вертикальные

б) горизонтальные

в) найдем наклонные асимптоты где

‒уравнение наклонной асимптоты

5) В данном уравнении не требуется найти интервалы монотонности функции.

6)

Эти критические точки разбивают всю область определения функции на интервале (˗∞; ˗2), (˗2; 4), (4; 10)и (10; +∞). Полученные результаты удобно представить в виде следующей таблицы.

Часто в физике и математике требуется найти наименьшее значение функции. Как это сделать, мы сейчас расскажем.

Как находить наименьшее значение функции: инструкция

  1. Чтобы вычислить наименьшее значение непрерывной функции на заданном отрезке, нужно следовать такому алгоритму:
  2. Найти производную от функции.
  3. Найти на заданном отрезке точки, в которых производная равна нулю, а также все критические точки. Затем выяснить значения функции в этих точках, то есть решить уравнение, где x равно нулю. Выяснить, какое из значений наименьшее.
  4. Выявить, какое значение функция имеет на конечных точках. Определить наименьшее значение функции в этих точках.
  5. Сравнить полученные данные с наименьшим значением. Меньшее из полученных чисел и будет являться наименьшим значением функции.

Заметьте, что в том случае, если функция на отрезке не имеет наименьших точек, это значит, что на данном отрезке она возрастает или убывает. Следовательно, наименьшее значение следует вычислять на конечных отрезках функции.

Во всех остальных случаях значение функции вычисляется по заданному алгоритму. В каждом пункте алгоритма вам нужно будет решить простое линейное уравнение с одним корнем. Решайте уравнение с помощью рисунка, чтобы избежать ошибок.

Как находить наименьшее значение функции на полуоткрытом отрезке? На полуоткрытом или открытом периоде функции наименьшее значение следует находить следующим образом. На конечных точках значения функции вычислите односторонний предел функции. Другими словами, решите уравнение, в котором стремящиеся точки заданы значением a+0 и b+0, где a и b - названия критических точек.

Теперь Вы знаете, как найти наименьшее значение функции. Главное - все вычисления делать правильно, точно и без ошибок.

И для её решения потребуется минимальное знание темы. Заканчивается очередной учебный год, всем хочется на каникулы, и чтобы приблизить этот момент я сразу же перехожу к делу:

Начнём с области. Область, о которой идёт речь в условии, представляет собой ограниченное замкнутое множество точек плоскости . Например, множество точек, ограниченное треугольником, включая ВЕСЬ треугольник (если из границы «выколоть» хотя бы одну точку, то область перестанет быть замкнутой) . На практике также встречаются области прямоугольной, круглой и чуть более сложных форм. Следует отметить, что в теории математического анализа даются строгие определения ограниченности, замкнутости, границы и т.д. , но, думаю, все осознаЮт эти понятия на интуитивном уровне, а бОльшего сейчас и не надо.

Плоская область стандартно обозначается буквой , и, как правило, задаётся аналитически – несколькими уравнениями (не обязательно линейными) ; реже неравенствами. Типичный словесный оборот: «замкнутая область , ограниченная линиями ».

Неотъемлемой частью рассматриваемого задания является построение области на чертеже. Как это сделать? Нужно начертить все перечисленные линии (в данном случае 3 прямые ) и проанализировать, что же получилось. Искомую область обычно слегка штрихуют, а её границу выделяют жирной линией:


Эту же область можно задать и линейными неравенствами : , которые почему-то чаще записывают перечислительным списком, а не системой .
Так как граница принадлежит области, то все неравенства, разумеется, нестрогие .

А теперь суть задачи. Представьте, что из начала координат прямо на вас выходит ось . Рассмотрим функцию , которая непрерывна в каждой точке области . График данной функции представляет собой некоторую поверхность , и маленькое счастье состоит в том, что для решения сегодняшней задачи нам совсем не обязательно знать, как эта поверхность выглядит. Она может располагаться выше, ниже, пересекать плоскость – всё это не важно. А важно следующее: согласно теоремам Вейерштрасса , непрерывная в ограниченной замкнутой области функция достигает в ней наибольшего (самого «высокого») и наименьшего (самого «низкого») значений, которые и требуется найти. Такие значения достигаются либо в стационарных точках , принадлежащих области D , либо в точках, которые лежат на границе этой области. Из чего следует простой и прозрачный алгоритм решения:

Пример 1

В ограниченной замкнутой области

Решение : прежде всего, нужно изобразить область на чертеже. К сожалению, мне технически трудно сделать интерактивную модель задачи, и поэтому я сразу приведу финальную иллюстрацию, на которой изображены все «подозрительные» точки , найденные в ходе исследования. Обычно они проставляются одна за другой по мере их обнаружения:

Исходя из преамбулы, решение удобно разбить на два пункта:

I) Найдём стационарные точки. Это стандартное действие, которые мы неоднократно выполняли на уроке об экстремумах нескольких переменных :

Найденная стационарная точка принадлежит области: (отмечаем её на чертеже) , а значит, нам следует вычислить значение функции в данной точке:

– как и в статье Наибольшее и наименьшее значения функции на отрезке , важные результаты я буду выделять жирным шрифтом. В тетради их удобно обводить карандашом.

Обратите внимание на наше второе счастье – нет никакого смысла проверять достаточное условие экстремума . Почему? Даже если в точке функция достигает, например, локального минимума , то это ЕЩЁ НЕ ЗНАЧИТ, что полученное значение будет минимальным во всей области (см. начало урока о безусловных экстремумах ) .

Что делать, если стационарная точка НЕ принадлежит области? Почти ничего! Нужно отметить, что и перейти к следующему пункту.

II) Исследуем границу области.

Поскольку граница состоит из сторон треугольника, то исследование удобно разбить на 3 подпункта. Но лучше это сделать не абы как. С моей точки зрения, сначала выгоднее рассмотреть отрезки, параллельные координатным осям, и в первую очередь – лежащие на самих осях. Чтобы уловить всю последовательность и логику действий постарайтесь изучить концовку «на одном дыхании»:

1) Разберёмся с нижней стороной треугольника. Для этого подставим непосредственно в функцию:

Как вариант, можно оформить и так:

Геометрически это означает, что координатная плоскость (которая тоже задаётся уравнением ) «высекает» из поверхности «пространственную» параболу , вершина которой немедленно попадает под подозрение. Выясним, где она находится :

– полученное значение «попало» в область, и вполне может статься, что в точке (отмечаем на чертеже) функция достигает наибольшего либо наименьшего значения во всей области . Так или иначе, проводим вычисления:

Другие «кандидаты» – это, конечно же, концы отрезка. Вычислим значения функции в точках (отмечаем на чертеже) :

Тут, кстати, можно выполнить устную мини-проверку по «урезанной» версии :

2) Для исследования правой стороны треугольника подставляем в функцию и «наводим там порядок»:

Здесь сразу же выполним черновую проверку, «прозванивая» уже обработанный конец отрезка:
, отлично.

Геометрическая ситуация родственна предыдущему пункту:

– полученное значение тоже «вошло в сферу наших интересов», а значит, нужно вычислить, чему равна функция в появившейся точке :

Исследуем второй конец отрезка :

Используя функцию , выполним контрольную проверку:

3) Наверное, все догадываются, как исследовать оставшуюся сторону . Подставляем в функцию и проводим упрощения:

Концы отрезка уже исследованы, но на черновике всё равно проверяем, правильно ли мы нашли функцию :
– совпало с результатом 1-го подпункта;
– совпало с результатом 2-го подпункта.

Осталось выяснить, если ли что-то интересное внутри отрезка :

– есть! Подставляя в уравнение прямой , получим ординату этой «интересности»:

Отмечаем на чертеже точку и находим соответствующее значение функции :

Проконтролируем вычисления по «бюджетной» версии :
, порядок.

И заключительный шаг : ВНИМАТЕЛЬНО просматриваем все «жирные» числа, начинающим рекомендую даже составить единый список:

из которого выбираем наибольшее и наименьшее значения. Ответ запишем в стилистике задачи нахождения наибольшего и наименьшего значений функции на отрезке :

На всякий случай ещё раз закомментирую геометрический смысл результата:
– здесь самая высокая точка поверхности в области ;
– здесь самая низкая точка поверхности в области .

В разобранной задаче у нас выявилось 7 «подозрительных» точек, но от задачи к задаче их количество варьируется. Для треугольной области минимальный «исследовательский набор» состоит из трёх точек. Такое бывает, когда функция , например, задаёт плоскость – совершенно понятно, что стационарные точки отсутствуют, и функция может достигать наибольшего/наименьшего значений только в вершинах треугольника. Но подобных примеров раз, два и обчёлся – обычно приходится иметь дело с какой-нибудь поверхностью 2-го порядка .

Если вы немного порешаете такие задания, то от треугольников голова может пойти кругом, и поэтому я приготовил для вас необычные примеры чтобы она стала квадратной:))

Пример 2

Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями

Пример 3

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области .

Особое внимание обратите на рациональный порядок и технику исследования границы области, а также на цепочку промежуточных проверок, которая практически стопроцентно позволит избежать вычислительных ошибок. Вообще говоря, решать можно как угодно, но в некоторых задачах, например, в том же Примере 2, есть все шансы значительно усложнить себе жизнь. Примерный образец чистового оформления заданий в конце урока.

Систематизируем алгоритм решения, а то с моей прилежностью паука он как-то затерялся в длинной нити комментариев 1-го примера:

– На первом шаге строим область , её желательно заштриховать, а границу выделить жирной линией. В ходе решения будут появляться точки, которые нужно проставлять на чертеже.

– Найдём стационарные точки и вычислим значения функции только в тех из них , которые принадлежат области . Полученные значения выделяем в тексте (например, обводим карандашом). Если стационарная точка НЕ принадлежит области, то отмечаем этот факт значком либо словесно. Если же стационарных точек нет вовсе, то делаем письменный вывод о том, что они отсутствуют. В любом случае данный пункт пропускать нельзя!

– Исследуем границу области. Сначала выгодно разобраться с прямыми, которые параллельны координатным осям (если таковые есть вообще) . Значения функции, вычисленные в «подозрительных» точках, также выделяем. О технике решения очень много сказано выше и ещё кое-что будет сказано ниже – читайте, перечитывайте, вникайте!

– Из выделенных чисел выбираем наибольшее и наименьшее значения и даём ответ. Иногда бывает, что такие значения функция достигает сразу в нескольких точках – в этом случае все эти точки следует отразить в ответе. Пусть, например, и оказалось, что это наименьшее значение. Тогда записываем, что

Заключительные примеры посвящены другим полезным идеям, которые пригодятся на практике:

Пример 4

Найти наибольшее и наименьшее значения функции в замкнутой области .

Я сохранил авторскую формулировку, в которой область задана в виде двойного неравенства. Это условие можно записать эквивалентной системой или же в более традиционном для данной задачи виде:

Напоминаю, что с нелинейными неравенствами мы сталкивались на , и если вам не понятен геометрический смысл записи , то, пожалуйста, не откладывайте и проясните ситуацию прямо сейчас;-)

Решение , как всегда, начинается с построения области, которая представляет собой своеобразную «подошву»:

Мда, иногда приходится грызть не только гранит науки….

I) Найдём стационарные точки:

Система-мечта идиота:)

Стационарная точка принадлежит области, а именно, лежит на её границе.

А так, оно, ничего… весело урок пошёл – вот что значит попить правильного чая =)

II) Исследуем границу области. Не мудрствуя лукаво, начнём с оси абсцисс:

1) Если , то

Найдём, где вершина параболы:
– ценИте такие моменты – «попали» прямо в точку , с которой уже всё ясно. Но о проверке всё равно не забываем:

Вычислим значения функции на концах отрезка:

2) С нижней частью «подошвы» разберёмся «за один присест» – безо всяких комплексов подставляем в функцию, причём, интересовать нас будет лишь отрезок :

Контроль:

Вот это уже вносит некоторое оживление в монотонную езду по накатанной колее. Найдём критические точки:

Решаем квадратное уравнение , помните ещё о таком? …Впрочем, помните, конечно, иначе бы не читали эти строки =) Если в двух предыдущих примерах были удобны вычисления в десятичных дробях (что, кстати, редкость), то здесь нас поджидают привычные обыкновенные дроби. Находим «иксовые» корни и по уравнению определяем соответствующие «игрековые» координаты точек-«кандидатов»:


Вычислим значения функции в найденных точках:

Проверку по функции проведите самостоятельно.

Теперь внимательно изучаем завоёванные трофеи и записываем ответ :

Вот это «кандидаты», так «кандидаты»!

Для самостоятельного решения:

Пример 5

Найти наименьшее и наибольшее значения функции в замкнутой области

Запись с фигурными скобками читается так: «множество точек , таких, что ».

Иногда в подобных примерах используют метод множителей Лагранжа , но реальная необходимость его применять вряд ли возникнет. Так, например, если дана функция с той же областью «дэ», то после подстановки в неё – с производной от никаких трудностей; причём оформляется всё «одной строкой» (со знаками ) без надобности рассматривать верхнюю и нижнюю полуокружности по отдельности. Но, конечно, бывают и более сложные случаи, где без функции Лагранжа (где , например, то же уравнение окружности) обойтись трудно – как трудно обойтись и без хорошего отдыха!

Всем хорошо сдать сессию и до скорых встреч в следующем сезоне!

Решения и ответы:

Пример 2: Решение : изобразим область на чертеже:

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



О чем мультфильм «Шрек навсегда»
Мультфильм: «Шрек навсегда» Год выпуска: 2010 Премьера (РФ): 20 мая 2010 г. Страна: США Режиссер: Майкл Питчел Сценарий: Джош Клауснер, Даррен Лемке Жанр: семейная комедия, фэнтези, приключения Официальный сайт: www.shrekforeverafter.com Сюжет муль

Можно ли сдавать кровь во время менструации
Врачи не рекомендуют сдавать кровь во время месячных, т.к. потери крови, хоть и не в значительном количестве, чреваты снижением уровня гемоглобина и ухудшением самочувствия женщины. Во время процедуры сдачи крови ситуация с самочувствием может обостриться вплоть до открытия кровотечения. Поэтому женщинам следует воздержаться от донации крови во время менструаций. И уже на 5-ый день после их оконча

Сколько ккал/час расходуется при мытье полов
Виды физической активности Расход энергии, ккал/час Приготовление пищи 80 Одевание 30 Вождение автомобиля 50 Вытирание пыли 80 Еда 30 Работа в саду 135 Глажение белья 45 Уборка постели 130 Хождение по магазинам 80 Сидячая работа 75 Колка дров 300 Мытье полов 130 Секс 100-150 Аэробные танцы низкой интенс

Что означает слово "жулик"
Жулик — это вор, занимающийся мелкими кражами, или плутоватый человек, склонный к мошенническим проделкам. Подтверждение этому определению содержится в этимологическом словаре Крылова, согласно которому слово «жулик» образовано от слова «жуль» (вор, мошенник), родственного глаголу &la

Как называется последний опубликованный рассказ братьев Стругацких
Небольшой рассказ Аркадия и Бориса Стругацких "К вопросу о циклотации" был впервые опубликован в апреле 2008 года в альманахе фантастики "Полдень. XXI век" (приложение к журналу "Вокруг света", изадется под редакцией Бориса Стругацкого). Публикация была приурочна к 75-летию Бориса Стругацкого.

Где можно почитать рассказы участников прграммы Work And Travel USA
Work and Travel USA (работай и путешествуй в США) - популярная программа студенческого обмена, по которой можно провести лето в Америке, легально работая в сфере обслуживания и путешествуя. История программыWork & Travel входит в программу межправительственных обменов Cultural Exchange Pro


Уха. Кулинарно-историческая справкаНа протяжении более двух с половиной веков словом «уха» обозначаются супы или отвар из свежей рыбы. Но было время, когда это слово толковалось более широко. Им обозначали суп — не только рыбный, но и мясной, гороховый и даже сладкий. Так в историческом документе — «


Информационно-рекрутинговые порталы Superjob.ru - рекрутинговый портал Superjob.ru работает на российском рынке онлайн-рекрутмента с 2000 года и является лидером среди ресурсов, предлагающих поиск работы и персонала. Ежедневно в базу данных сайта добавляется более 80 000 резюме специалистов и более 10 000 вакансий.

Что такое мотивация
Определение мотивации Мотивация (от лат. moveo — двигаю) — побуждение к действию; динамический процесс физиологического и психологического плана, управляющий поведением человека, определяющий его направленность, организованность, активность и устойчивость; способность человека через труд удовлетворять свои потребности. Мотивац

Кто такой Боб Дилана (Bob Dylan)
Боб Дилан (англ. Bob Dylan, настоящее имя — Роберт Аллен Циммерман англ. Robert Allen Zimmerman; род. 24 мая 1941) — американскийавтор-исполнитель песен, который — по данным опроса журнала Rolling Stone — является второй (

Как транспортировать комнатные растения
После покупки комнатных растений, перед садоводом стоит задача - как доставить невредимыми купленные экзотические цветы. Решить эту проблему помогут знания основных правил упаковки и перевозки комнатных растений. Для переноски или перевозки растения необходимо упаковывать. На какое бы небольшое расстояние не переносились растения, они могут быть повреждены, могут пересохнуть, а зимой &m


Top