Какие функции в клетке выполняют нуклеиновые кислоты? Структура и функции нуклеиновых кислот.

Молекулярные основы наследственности и изменчивости

1. Нуклеиновые кислоты, их строение, функции и генезис

2. Основные этапы биосинтеза белков. Генетический код, его основные свойства

3. Регуляция экспрессии генов

Нуклеиновые кислоты, их строение и функции

Нуклеиновые кислоты – это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды , связанные фосфодиэфирными связями .

Нуклеотиды – это органические вещества, молекулы которых состоят из остатка пентозы (рибозы или дезоксирибозы), к которому ковалентно присоединены остаток фосфорной кислоты и азотистое основание. Азотистые основания в составе нуклеотидов делятся на две группы: пуриновые (аденин и гуанин) и пиримидиновые (цитозин, тимин и урацил). Дезоксирибонуклеотиды включают в свой составдезоксирибозу аденин (А), гуанин (Г), тимин (Т), цитозин (Ц). Рибонуклеотиды включают в свой состав рибозу и одно из азотистых оснований: аденин (А), гуанин (Г), урацил (У),цитозин (Ц).

В ряде случаев в клетках встречаются и разнообразные производные от перечисленных азотистых оснований – минорные основания, входящие в состав минорных нуклеотидов.

Свободные нуклеотиды и сходные с ними вещества играют важную роль в обмене веществ. Например, НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат) служат переносчиками электронов и протонов.

Свободные нуклеотиды способны присоединять еще 1...2 фосфорные группы, образуя макроэргические соединения . Универсальным источником энергии в клетке является АТФ – аденозинтрифосфорная кислота, состоящая из аденина, рибозы и трех остатков фосфорной (пирофосфорной) кислоты. При гидролизе одной концевой пирофосфатной связи выделяется около 30,6 кДж/моль (или 8,4 ккал/моль) свободной энергии, которая может использоваться клеткой. Такая пирофосфатная связь называется макроэргической (высокоэнергетической).

Кроме АТФ существуют и другие макроэргические соединения на основе нуклеотидов: ГТФ (содержит гуанин; участвует в биосинтезе белков, глюкозы), УТФ (содержит урацил; участвует в синтезе полисахаридов).

Нуклеотиды способны образовывать циклические формы, например, цАМФ, цЦМФ, цГМФ. Циклические нуклеотиды выполняют роль регуляторов различных физиологических процессов.

Нуклеиновые кислоты

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота ) и РНК (рибонуклеиновая кислота ). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков (см. ниже). Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом . Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.


Нуклеиновые кислоты – это химически активные вещества. Они образуют разнообразные соединения с белками – нуклеопротеиды , или нуклеопротеины .

Дезоксирибонуклеиновая кислота (ДНК) – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды. ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.

Нуклеиновые кислоты были открыты Мишером в 1868 г. Однако лишь в 1924 г. Фёльген доказал, что ДНК является обязательным компонентом хромосом. В 1944 г. Эвери, Мак-Леод и Мак-Карти установили, что ДНК играет решающую роль в хранении, передаче и реализации наследственной информации.

Существует несколько типов ДНК: А, В, Z, Т–формы. Из них в клетках обычно встречается В–форма – двойная правозакрученная спираль, которая состоит из двух нитей (или цепей), связанных между собой водородными связями. Каждая нить представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары : А=Т (две водородных связи) и Г≡Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу. Длина витка двойной спирали равна 3,4 нм, расстояние между смежными парами азотистых оснований 0,34 нм, диаметр двойной спирали 1,8 нм.

В эукариотических клетках ДНК существует в виде нуклеопротеиновых комплексов, в состав которых входят белки-гистоны.

Длина ДНК измеряется числом нуклеотидных пар (сокращ. – пн , или b ). Длина одной молекулы ДНК колеблется от нескольких тысяч пн (сокращ. – тпн , или Kb ) до нескольких миллионов пн (мпн , или Mb ).

Глава V . НУКЛЕИНОВЫЕ КИСЛОТЫ

§ 13. НУКЛЕИНОВЫЕ КИСЛОТЫ:

ФУНКЦИИ И СОСТАВ

Общие представления о нуклеиновых кислотах

Нуклеиновые кислоты – важнейшие биополимеры с относительной молекулярной массой, достигающей 5·10 9 . Они содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций. Нуклеиновые кислоты – это полимеры, мономерными звеньями которых являются нуклеотиды .

Существует два различных типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В клетках прокариот, кроме основной хромосомной ДНК, часто встречаются внехромосомные ДНК – плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Клетки эукариот содержат ДНК также в митохондриях и хлоропластах.

Интересно знать! Молекулы ДНК – самые крупные молекулы. Молекула ДНК E . coli состоит примерно из 4000000 пар нуклеотидов, ее относительная масса равна 26000000000, а длина - 1,4 мм, что в 700 раз превышает размеры ее клетки. Молекулы ДНК эукариот могут достигать еще больших размеров, их длина может составлять несколько см, а относительная масса 10 10 -10 11 . Чтобы записать нуклеотидную последовательность ДНК человека, потребуется около 1000000 страниц.

Что же касается РНК, то по выполняемым ими функциям различают:

1. информационные РНК (иРНК) - в них записана информация о первичной структуре белка;

2. рибосомные РНК (рРНК) - входят в состав рибосом;

3. транспортные РНК (тРНК) - обеспечивают доставку аминокислот к месту синтеза белка.

В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.

Нуклеиновые кислоты могут быть линейными и кольцевыми (ковалентно замкнутыми). Они могут состоять из одной или двух цепей. Ниже приведена схема, отражающая существование в природе различных типов нуклеиновых кислот:

Функции нуклеиновых кислот

Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах . Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.

Генетическая информация передается от родителей к потомкам. Этот процесс связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию хранителя генетической информации, и последующей передачи ее потомкам. Например, в результате деления дочерние клетки получают от материнской идентичные молекулы ДНК, а следовательно, и идентичную генетическую информацию (рис. 38). При размножении вирусы также передают дочерним вирусным частицам точные копии нуклеиновой кислоты. При половом размножении потомки получают генетическую информацию от обоих родителей. Вот почему дети наследуют признаки обоих родителей.

Рис. 38. Распределение ДНК при делении клетки

В результате реализации генетической информации происходит синтез белков, закодированных в ДНК в виде генов (или для некоторых вирусов – в РНК). В этом процессе информация о первичной структуре белка переписывается с молекулы ДНК на иРНК и затем расшифровывается на рибосомах при участии тРНК. В итоге образуется белок:

ДНК РНК белок.

Состав нуклеиновых кислот

Нуклеиновые кислоты представляют собой полимеры, построенные из нуклеотидов, соединенных между собой фосфодиэфирными связями. Каждый нуклеотид состоит из остатков азотистого основания, пентозы и фосфорной кислоты.

Различают пиримидиновые и пуриновые основания, называемые также соответственно пиримидины и пурины . Пиримидиновые основания являются производными пиримидина:

пуриновые основания – производными пурина:

К пиримидинам относятся урацил, тимин и цитозин, к пуринам – аденин и гуанин:


В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Кроме азотистых оснований, нуклеиновые кислоты содержат пентозы: ДНК – D-дезоксирибозу, а РНК – D-рибозу. Углеводы находятся в виде b-аномера фуранозной формы:

Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Схематически образование нуклеозида можно изобразить так:

В состав нуклеиновых кислот входят 8 нуклеозидов, 4 – в состав РНК и 4 – в состав ДНК (рис. 39).

Нуклеозиды, входящие в состав РНК:


Нуклеозиды, входящие в состав ДНК:


Рис. 39. Нуклеозиды

Нуклеозид, связанный с остатком фосфорной кислоты, называется нуклеотидом:

При этом остаток фосфорной кислоты может быть связан с 3’- или 5’- атомом углерода:


Сокращенно аденозин-5’-монофосфат обозначается как АМФ. Если нуклеотид образован дезоксорибозой, аденином и одним остатком фосфорной кислоты, то он будет носить название дезоксиаденозинмонофосфат, или сокращенно дАМФ. В таблице 5 представлена номенклатура нуклеотидов.

Таблица 5.

Номенклатура нуклеотидов, образующих ДНК и РНК

Азотистое

основание

Нуклеозид

Нуклеотид

полное название

сокращенное название

Аденозин

Дезоксиаденозин

Аденозинмонофосфат

Дезоксиаденозинмонофосфат

Гуанозин

Дезоксигуанозин

Гуанозинмонофосфат

Дезоксигуанозинмонофосфат

Дезоксицитидин

Цитидинмонофосфат

Дезоксицитидинмонофосфат

Уридинмонофосфат

Дезокситимидин

Дезокситимидинмонофосфат

К нуклеозидмонофосфатам (НМФ) и дезоксинуклеозидмонофосфатам (дНМФ) могут присоединиться еще 1 или 2 остатка фосфорной кислоты. При этом образуются нуклеозиддифосфаты (НДФ), дезоксинуклеозиддифосфаты (дНДФ) или нуклеозидтрифосфаты (НТФ) и дезоксинуклеозидтрифосфаты (дНТФ).

НТФ и дНТФ служат субстратами для синтеза РНК и ДНК соответственно.

Нуклеиновые кислоты.

Нуклеиновые кислоты – природные высокомолекулярные биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Макромолекула нуклеиновых кислот, с молекулярной массой от 10000 Дальтон до нескольких миллионов, открыты в 1869 г. швейцарским химиком Ф. Мишером в ядрах лейкоцитов, входящих в состав гноя, отсюда и название (нуклеус – ядро).

Нуклеиновые кислоты представляют собой полимеры, мономерами которых являются нуклеотиды . Каждый нуклеотид состоит из азотистого основания, сахара пентозы и остатка фосфорной кислоты. Из нуклеотидов строятся длинные молекулы – полинуклеотиды .

Фосфат

Азотистое

основание

Связь между

фосфатом и сахаром

Рис. Строение нуклеотида.

Сахар , входящий в состав нуклеотида, содержит пять углеродных атомов, т. е. представляет собой пентозу . В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот – рибонуклеиновые (РНК), которые содержат рибозу , и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу (С 5 Н 10 О 4).

Основания , в обоих видах нуклеиновых кислот, содержатся четырех разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов . К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов – цитизин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК).

Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота.

Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют совой нукоеотиды. Таковы, например, аденозинтрифосфат (АТФ), никотинамидадениндинуклеотид (НАД), никотинамидадениндинуклеотид-фосфат (НАДФ) и флавинадениндинуклеотид (ФАД).

Нуклеиновые кислоты

ДНКРНК


ядерная цитоплазматические иРНК тРНК рРНК

В настоящее время известно большое число разновидностей ДНК и РНК, отличных друг от друга по строению и значению в метаболизме.

Пример: в бактериях клеток кишечной палочки содержится около 1000 различных нуклеиновых кислот, а у животных и растений еще больше.

Каждый вид организмов содержит свой, характерный только для него, набор этих кислот. ДНК локализуется преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав ядрышек, рибосом митохондрий, пластид и цитоплазмы.

Молекула ДНК является универсальным носителем генетической информации в клетках. Именно благодаря строению и функциям этой молекулы признаки передаются по наследству – от родителей потомкам, т.е. осуществляется всеобщее свойство живого – наследственность. Молекулы ДНК – самые крупные биополимеры.

Строение ДНК.

Структура молекул ДНК была расшифрована в 1953 г. Дж. Уотсоном и Ф. Криком. За это открытие они получили Нобелевскую премию.

Согласно модели ДНК по Уотсону – Крику , молекула ДНК состоит из двух полинуклеотидных цепочек, закрученных вправо вокруг одной и той же оси , образуя двойную спираль . Цепи распложены антипараллельно, т.е. навстречу друг другу. Объединяются две полинуклеотидные цепи в единую молекулу ДНК при помощи водородных связей, возникающих между азотистым основанием нуклеотидов разных цепей. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между дезоксирибозой, в молекуле ДНК (и рибозой в РНК), одного и остатком фосфорной кислоты другого нуклеотида.

Цепи двойной спирали комплементарны друг другу, т. к. спаривание оснований происходит в строгом соответствии: аденин соединяется с тимином, а гуанин – с цитозином.

В результате у всякого организма Рис. Спаривание нуклеотидов.

число адениловых нуклеотидов равно числу тимидиловых , а число гуаниловых – числу цитидиловых. Эта закономерность получила название «правило Чаргаффа».

Строгое соответствие нуклеотидов, расположенных в парных антипараллельных нитях ДНК, называются комплементарностью. Это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Таким образом, двойная спираль стабилизирована многочисленными водородными свойствами (между А и Т образуется две, а между Г и Ц – три) и гидрофобными взаимодействиями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований (один виток). Диаметр спирали – 2 нм. Расстояние между углеводными компонентами двух спаренных нуклеотидов 1,1 нм. Длина молекулы нуклеиновых кислот достигает сотен тысяч нанометров. Это значительно больше самой крупной макромолекулы белка, которая в развернутом виде достигает в длину не более 100-200 нм. Масса молекулы ДНК составляет 6*10 -12 г.

Процесс удвоения молекулы ДНК называется репликацией . Репликация происходит следующим образом. Под действием специальных ферментов (геликаза) разрываются водородные связи между нуклеотидами двух цепочек. Спираль раскручивается. К освободившимся связям, по принципу комплементарности, присоединяются соответствующие нуклеотиды ДНК, в присутствии фермента ДНК-полимеразы. Это наращивание может происходить только в направлении 5"→ 3". Это означает непрерывного возможность копирования только одной цепи ДНК (на рисунке верхняя). Этот процесс называется непрерывнаярепликация . Копирование другой цепи должно всякий раз начинаться вновь, в результате в цепи возникают разрывы. Для их ликвидации необходим фермент – ДНК-лигаза. Такую репликацию называют прерывистой .

Данный способ репликации ДНК, предложенный Уотсоном и Криком известен под названием полуконсервативная репликация .

Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т.е. «старая» цепочка ДНК как бы является матрицей для синтеза «новой». Такие реакции называются реакции матричного синтеза ; они характерны только для живого.

Репликация (редупликация) позволяет сохранить постоянство структуры ДНК. Синтезированная молекула ДНК абсолютно идентична исходной по последовательности нуклеотидов. Если под воздействием различных факторов в процессе репликации в молекуле ДНК происходят изменения в числе и порядке следования нуклеотидов, то возникают мутации. Способность молекул ДНК исправлять возникающие изменения и восстанавливать исходную называется репарацией .

Функции ДНК:

1) Хранение наследственной информации.

ДНК хранит информацию в виде последовательности нуклеотидов.

2) Воспроизведение и передача генетической информации.

Возможность передачи информации дочерним клеткам обеспечивается способностью хромосом к разделению на хроматиды с последующей редупликацией молекул ДНК. В ней закодирована генетическая информация о последовательности аминокислот в молекуле белка. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном.

3) Структурная.

ДНК присутствует в хромосомах в качестве структурного компонента, т.е. является химической основой хромосомного генетического материала (гена).

4) ДНК является матрицей для создания молекул РНК.

РНК содержиться во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит в качестве пентозы рибозу (вместо дезоксирибозы), а в качестве одного из пиримидиновых оснований – урацил (вместо тимина). Существует три типа РНК. Это матричная, или информационная, РНК (мРНК, иРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Все три синтезируются непосредственно на ДНК, а количество РНК в каждой клетке зависит от количества вырабатываемого этой клеткой белка.

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей (фосфодиэфирные связи) между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

В отличие от ДНК, молекулы РНК, представляют собой одноцепочечный линейный биополимер, состоящий из нуклеотидов.

Двухцепочечные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом – вирусная РНК.

Нуклеотиды одной молекулы РНК могут вступать в комплементарные взаимоотношения с другими нуклеотидами этой же цепочки, в результате образования вторичной и третичной структуры молекул РНК.

Рис. Строение транспортной РНК.

Рибисомальная РНК (рРНК) составляет 85% всей РНК клетки, она синтезируется в ядрышке, в соединение с белком входит в состав рибосом, митохондрий (митохондриальная РНК) и пластид (пластидная РНК). Содержит от 3 до 5 тыс. нуклеотидов. На рибосомах идет синтез белка.

Функции : рРНК выполняет структурную функцию (входит в состав рибосом) и участвует в формировании активного центра рибосом, где происходит образование пептидных связей между молекулами аминокислот в процессе биосинтеза белка.

Информационная РНК (иРНК) составляет 5% всей РНК в клетках. Она синтезируется в процессе транскрипции на определенном участке молекулы ДНК – гене. По строению иРНК комплементарна участку молекул ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывалась информация (может состоять из 300-30000 нуклеотидов)

Функции : иРНК переносит информацию о синтезе белка из ядра в цитоплазму на рибосомы и становится матрицей для синтеза молекул белка.

Транспортная РНК (тРНК) составляет около 10% всей РНК, синтезируется в ядрышке, имеет короткую цепь нуклеотидов и находится в цитоплазме. Она имеет функцию трилистника. У каждой аминокислоты имеется собственная семья молекул тРНК. Они доставляют содержащиеся в цитоплазме аминокислоты к рибосоме.

Функции : на одном конце находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому присоединяется аминокислота. Для каждой аминокислоты – своя тРНК.


Подобно белкам, нуклеиновые кислоты - биополимеры, а их функция заключается в хранении, реализации и передаче генетической (наследственной) информации в живых организмах.

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований (табл. 1).

Таблица 1

Компоненты нуклеотидов ДНК и РНК

Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей (рис. 1), соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин - только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК - способность к самовоспроизведению или удвоению (рис. 2). При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.


Рис. 1. Двойная спираль ДНК. Две цепи обвиты одна вокруг другой. Каждая цепь (изображенная в виде ленты) состоит из чередующихся остатков сахара и фосфатных групп. Водородные связи между азотистыми основаниями (А, Т, Г и Ц) удерживают две цепи вместе

Рис. 2. Репликация ДНК. Двойная спираль «расстегивается» по слабым водородным связям, соединяющим комплементарные основания двух цепей. Каждая из старых цепей служит матрицей для образования новой: нуклеотиды с комплементарными основаниями выстраиваются против старой цепи и соединяются друг с другом

Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов. Выделяют три вида РНК (табл. 2), различающиеся по величине молекул и выполняемым функциям, - информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).

Таблица 2

Три вида РНК

Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции - биосинтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Состоят из разных мономеров – нуклеотидов, но сами нуклеотиды различаются между собой некоторыми структурами.

Что является мономером нуклеиновых кислот?

Нуклеотиды

Какие функции нуклеиновых кислот вам известны?

Хранение и передача наследственной информации. В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов. Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме. В РНК каждый ее тип выполняет свою функцию в зависимости от своего строения. м-РНК – копия участка ДНК, где записаны информация о числе, составе и последовательности аминокислотных остатков, определяющих структуру и функции белковой молекулы. В данной РНК заключен план построения молекулы полипептида. т-РНК – ее роль состоит в присоединении молекулы аминокислоты и транспортировке ее к месту синтеза белка. р-РНК – соединяется с белком и образует особые органоиды – рибосомы, на которых и осуществляется сборка белковых молекул в клетке любого живого организма.

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

Наследственность, изменчивость, размножение

Вопросы для повторения и задания

1. Что такое нуклеиновые кислоты? Почему они получили такое название?

Нуклеиновые кислоты – это биополимеры, мономерами которых являются нуклеотиды. От лат. «нуклеос» - ядро, так как эти кислоты располагаются, или синтезируются в ядре, или у прокариот функцию ядерной информации выполняет нуклеоид (ДНК илиРНК).

2. Какие типы нуклеиновых кислот вы знаете?

ДНК, РНК: и-РНК, т-РНК, р-РНК.

4. Назовите функции ДНК. Как взаимосвязаны строение и функции ДНК?

Хранение и передача наследственной информации – располагается ДНК строго в ядре.

Молекула ДНК способна к самовоспроизведению путем удвоения. Под действием ферментов двойная спираль ДНК раскручивается, связи между азотистыми основаниями разрываются.

В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов.

Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме.

5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Все виды РНК синтезируются на матрице ДНК.

6. Достаточно ли знать, какой моносахарид входит в состав нуклеотидов, чтобы понять, о какой нуклеиновой кислоте идёт речь?

Да, в состав РНК входит рибоза.

В состав ДНК входи дезоксирибоза.

Виды РНК не возможно будет по одному моносахариду распознать.

7. Фрагмент одной цепи ДНК имеет следующий состав: А-Г-Ц-Г-Ц-Ц-Ц-Т-А-. Используя принцип комплементарности достройте вторую цепь.

А-Г-Ц-Г-Ц-Ц-Ц-Т-А

Т-Ц-Г-Ц-Г- Г-Г-А-Т

Подумайте! Вспомните!

1. Почему в клетках существует три вида молекул РНК, но только один вид ДНК?

ДНК – самая крупная молекула, из ядра выйти не может, поры маловаты. РНК мелкие молекулы, каждая выполняет свою функцию, обеспечивая различные функции в клетке, одновременно работая. На матрице ДНК одновременно может синтезироваться множество видов РНК, и все они идут выполнять свои функции.

3. Какие виды РНК будут одинаковы у всех организмов? Какой вид РНК обладает максимальной изменчивостью? Объясните свою точку зрения.

и-РНК и т-РНК будет у всех организмов одинаковая, так как биосинтез белка идет по единому механизму, а т-РНК переносит одни и те же 20 аминокислот. р-РНК может быть иной.


Top