Що таке логарифми визначення. Логарифм - властивості, формули, графік

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів зі шкільної програми та ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складне вираження з використанням низки правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи вирішення таких рівнянь, ми розширимо Ваші знання для іншої не менш важливої ​​теми — логарифмічні нерівності.

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Логарифмом позитивного числа N на підставі(b> 0, b 1 ) називається показник ступеня x , в яку потрібно звести b щоб отримати N .

Позначення логарифму:

Цей запис рівнозначний наступному:b x = N .

П р і м е ри: log 3 81 = 4, оскільки 3 4 = 81;

Log 1/3 27 = 3, оскільки (1/3) - 3 = 3 3 = 27.

Наведене вище визначення логарифму можна записати у вигляді тотожності:

Основні властивості логарифмів.

1) log b= 1 , так як b 1 = b.

b

2) log 1 = 0 , так як b 0 = 1 .

b

3) Логарифм твору дорівнює сумі логарифмів співмножників:

log ( ab) = log a+ log b.

4) Логарифм приватного дорівнює різниці логарифмів діленого та дільника:

log ( a/b) = log a- log b.

5) Логарифм ступеня дорівнює добутку показника ступеня на логарифм її основи:

log (b k ) = k· log b.

Наслідком цієї властивості є таке:логарифм кореня дорівнює логарифму підкореного числа, поділеному на ступінь кореня:

6) Якщо на підставі логарифму знаходиться ступінь, то величину, зворотний показник ступеня, можна винести за знак логарима:

Два останні властивості можна поєднати в одне:

7) Формула модуля переходу (т. e . переходу від однієї основилогарифма до іншої основи):

В окремому випадку при N = aмаємо:

Десятичним логарифмом називається логарифм з основи 10. Він позначається lg, тобто. log 10 N = lg N. Логарифми чисел 10, 100, 1000, ... p авни відповідно 1, 2, 3, …,тобто. мають стільки позитивних

одиниць, скільки нулів стоїть у логарифмованій кількості після одиниці. Логарифми чисел 0.1, 0.01, 0.001, ... p авни відповідно -1, –2, -3, ..., тобто. мають стільки негативних одиниць, скільки нулів стоїть у логарифмованому числі перед одиницею ( рахуючи і нуль цілих). Логарифми решти чисел мають дробову частину, звану мантисою. Цілачастина логарифму називається характеристикою. Для практичного приЗміни десяткові логарифми найбільш зручні.

Натуральним логарифмом називається логарифм з основи е. Він позначається ln, тобто. log eN = ln N. Число еє ірраціональним, йогонаближене значення 2.718281828.Воно є межею, до якої прагне число(1 + 1 / n) n при необмеженому зростанніn(Див. перша чудова межа ).
Як це здасться дивним, натуральні логарифми виявилися дуже зручними при проведенні різноманітних операцій, пов'язаних з аналізом функцій.
Обчислення логарифмів на підставіездійснюється набагато швидше, ніж з будь-якої іншої основи.

Логарифмом числа b на підставі а називається показник ступеня, який потрібно звести число а щоб отримати число b.

Якщо то .

Логарифм - вкрай важлива математична величина, Оскільки логарифмічний обчислення дозволяє не тільки вирішувати показові рівняння, а й оперувати з показниками, диференціювати показові та логарифмічні функції, інтегрувати їх і приводити до більш прийнятного виду, що підлягає розрахунку.

Вконтакте

Усі властивості логарифмів пов'язані безпосередньо із властивостями показових функцій. Наприклад, той факт, що означає, що:

Слід зауважити, що при вирішенні конкретних завдань властивості логарифмів можуть виявитися більш важливими і корисними, ніж правила роботи зі ступенями.

Наведемо деякі тотожності:

Наведемо основні вирази алгебри:

;

.

Увага!може існувати тільки за x>0, x≠1, y>0.

Намагатимемося розібратися з питанням, що таке натуральні логарифми. Окремий інтерес у математиці представляють два види— перший має в основі число «10», і зветься «десятковий логарифм». Другий називається натуральним. Основа натурального логарифму - число "е". Саме про нього ми і детально говоритимемо в цій статті.

Позначення:

  • lg x - десятковий;
  • ln x - натуральний.

Використовуючи тотожність, можна побачити, що ln e = 1, як і те, що lg 10=1.

Графік натурального логарифму

Побудуємо графік натурального логарифму стандартним класичним способом за точками. За бажання, перевірити, чи правильно ми будуємо функцію, можна за допомогою дослідження функції. Однак, є сенс навчитися будувати його «вручну», щоб знати, як правильно порахувати логарифм.

Функція: y = ln x. Запишемо таблицю точок, якими пройде графік:

Пояснимо, чому ми вибрали саме такі значення аргументу х. Вся річ у тотожності: . Для натурального логарифму ця тотожність виглядатиме таким чином:

Для зручності ми можемо взяти п'ять опорних точок:

;

;

.

;

.

Таким чином, підрахунок натуральних логарифмів - досить нескладне заняття, більше того, він спрощує підрахунки операцій зі ступенями, перетворюючи їх на звичайне множення.

Побудувавши за точками графік, отримуємо приблизний графік:

Область визначення натурального логарифму (тобто всі допустимі значення аргументу Х) — усі числа більші за нуль.

Увага!До області визначення натурального логарифму входять лише позитивні числа! До області визначення не входить х=0. Це неможливо виходячи з умов існування логарифму.

Область значень (тобто усі допустимі значення функції y = ln x) — усі числа в інтервалі .

Межа натурального log

Вивчаючи графік, виникає питання - як поводиться функція при y<0.

Очевидно, що графік функції прагне перетнути вісь, але не зможе цього зробити, оскільки натуральний логарифм при х<0 не существует.

Межа натуральної logможна записати таким чином:

Формула заміни основи логарифму

Мати справу з натуральним логарифмом набагато простіше, ніж з логарифмом, що має довільну основу. Саме тому спробуємо навчитися приводити будь-який логарифм до натурального, або висловлювати його по довільній основі через натуральні логарифми.

Почнемо з логарифмічної тотожності:

Тоді будь-яке число, або змінну можна представити у вигляді:

де х - будь-яке число (позитивне згідно з властивостями логарифму).

Даний вираз можна прологарифмувати з обох боків. Зробимо це за допомогою довільної основи z:

Скористаємося властивістю (тільки замість «с» у нас вираз):

Звідси отримуємо універсальну формулу:

.

Зокрема, якщо z=e, тоді:

.

Нам вдалося уявити логарифм з довільної основи через відношення двох натуральних логарифмів.

Вирішуємо завдання

Щоб краще орієнтуватися в натуральних логарифмах, розглянемо приклади кількох завдань.

Завдання 1. Необхідно розв'язати рівняння ln x = 3.

Рішення:Використовуючи визначення логарифму: якщо , то отримуємо:

Завдання 2. Розв'яжіть рівняння (5 + 3 * ln (x - 3)) = 3.

Рішення: Використовуючи визначення логарифму: якщо , то отримуємо:

.

Ще раз застосуємо визначення логарифму:

.

Таким чином:

.

Можна приблизно обчислити відповідь, а можна залишити її і в такому вигляді.

Завдання 3.Розв'яжіть рівняння.

Рішення:Зробимо підстановку: t = ln x. Тоді рівняння набуде наступного вигляду:

.

Перед нами квадратне рівняння. Знайдемо його дискримінант:

У статистиці та теорії ймовірності логарифмічні величини зустрічаються дуже часто. Це не дивно, адже число е — найчастіше відображає темпи зростання експоненційних величин.

В інформатиці, програмуванні та теорії обчислювальних машин, логарифми зустрічаються досить часто, наприклад, щоб зберегти в пам'яті N знадобиться бітів.

У теоріях фракталів та розмірності логарифми використовуються постійно, оскільки розмірності фракталів визначаються тільки за їх допомогою.

У механіці та фізицінемає такого розділу, де не використовувалися логарифми. Барометричний розподіл, усі принципи статистичної термодинаміки, рівняння Ціолковського та інше — процеси, які математично можна описати лише за допомогою логарифмування.

У хімії логарифмування використовують у рівняннях Нернста, описи окислювально-відновних процесів.

Вражаюче, але навіть у музиці, з метою дізнатися кількість частин октави, використовують логарифми.

Натуральний логарифм Функція y=ln x її властивості

Доказ основної властивості натурального логарифму

Логарифмом позитивного числа b на підставі a (a>0, a не дорівнює 1) називають таке число с, що a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0) nbsp nbsp nbsp

Зверніть увагу: логарифм від позитивного числа не визначено. Крім того, в основі логарифму має бути позитивне число, не рівне 1. Наприклад, якщо ми зведемо -2 у квадрат, отримаємо число 4, але це не означає, що логарифм на підставі -2 від 4 дорівнює 2.

Основне логарифмічне тотожність

a log a b = b (a > 0, a ≠ 1) (2)

Важливо, що області визначення правої та лівої частин цієї формули відрізняються. Ліва частина визначена тільки за b>0, a>0 і a ≠ 1. Права частина визначена за будь-якого b, а від a взагалі не залежить. Таким чином, застосування основної логарифмічної "тотожності" при вирішенні рівнянь та нерівностей може призвести до зміни ОДЗ.

Два очевидні наслідки визначення логарифму

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Дійсно, при зведенні числа a в першу міру ми отримаємо те саме число, а при зведенні в нульовий ступінь - одиницю.

Логарифм твору та логарифм приватного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотілося б застерегти школярів від бездумного застосування даних формул під час вирішення логарифмічних рівнянь та нерівностей. При їх використанні "зліва направо" відбувається звуження ОДЗ, а при переході від суми чи різниці логарифмів до логарифму твору або приватного - розширення ОДЗ.

Дійсно, вираз log a (f (x) g (x)) визначено у двох випадках: коли обидві функції суворо позитивні або коли f (x) і g (x) обидві менше від нуля.

Перетворюючи цей вираз у суму log a f (x) + log a g (x) , ми змушені обмежуватися лише випадком, коли f(x)>0 і g(x)>0. В наявності звуження області допустимих значень, а це категорично неприпустимо, тому що може призвести до втрати рішень. Аналогічна проблема існує й у формули (6).

Ступінь можна виносити за знак логарифму

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

І знову хотілося б покликати до акуратності. Розглянемо наступний приклад:

Log a (f(x) 2 = 2 log a f(x)

Ліва частина рівності визначена, очевидно, за всіх значень f(х), крім нуля. Права частина - тільки за f(x)>0! Виносячи ступінь із логарифму, ми знову звужуємо ОДЗ. Зворотна процедура призводить до розширення області допустимих значень. Всі ці зауваження стосуються не тільки ступеня 2, але й будь-якого парного ступеня.

Формула переходу до нової основи

log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Той рідкісний випадок, коли ОДЗ не змінюється під час перетворення. Якщо ви розумно вибрали основу з (позитивна і не рівна 1), формула переходу до нової основи є абсолютно безпечною.

Якщо в якості нової підстави вибрати число b, отримаємо важливий окремий випадок формули (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Декілька простих прикладів з логарифмами

Приклад 1. Обчисліть: lg2 + lg50.
Рішення. lg2 + lg50 = lg100 = 2. Ми скористалися формулою суми логарифмів (5) та визначенням десяткового логарифму.


Приклад 2. Розрахуйте: lg125/lg5.
Рішення. lg125/lg5 = log 5 125 = 3. Ми використали формулу переходу до нової основи (8).

Таблиця формул, пов'язаних із логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Випливають із його визначення. І так логарифм числа bна підставі авизначається як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x=log a b, рівнозначне рішенню рівняння a x = b.Наприклад, log 2 8 = 3тому що 8 = 2 3 . Формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа .

З логарифмами, як і з будь-якими числами, можна виконувати операції складання, відніманняі всіляко трансформувати. Але через те, що логарифми - це не зовсім ординарні числа, тут застосовні свої особливі правила, які називаються основними властивостями.

Складання та віднімання логарифмів.

Візьмемо два логарифми з однаковими підставами: log a xі log a y. Тоді зними можна виконувати операції складання та віднімання:

log a x + log a y = log a (x · y);

log a x - log a y = log a (x: y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

З теореми логарифму приватногоможна отримати ще одну властивість логарифму. Загальновідомо, що log a 1= 0, отже,

log a 1 /b= log a 1 - log a b= - log a b.

А значить має місце рівність:

log a 1 / b = - log a b.

Логарифми двох взаємно зворотних чиселпо одному й тому підставі будуть різні друг від друга виключно знаком. Так:

Log 3 9 = - log 3 1/9; log 5 1/125 = -log 5 125.


Top