Основные этапы геологической истории земной коры. Складчатые пояса и горы

Период фазы складчатости - это период максимально интенсивного проявления внутренних сил в геосинклинали. В это же время активизируются и все другие формы проявления эндогенных процессов: магматическая деятельность, землетрясения и др.

В результате проявления фаз складчатости структура данного участка земной коры резко меняется. Участок, где происходит складчатость, обычно испытывает поднятие; если здесь было море, то оно отступает и образуется суша, на которой начинают действовать процессы денудации. Замки вновь образованных складок обычно срезаются денудацией. При последующих опусканиях морские осадки ложатся в этом месте на размытую поверхность складчатых пластов. Следовательно, пласты, смятые в складки, соприкасаются с вновь отложившимися горизонтальными пластами под определенным углом. Такое расположение пород носит название углового несогласия.

Байкальская. Делится на две фазы: ранняя (в середине R) и более распространённая поздняя (рубеж R-V). Сооружения этой эпохи очень похожи на древние платформы. Различие лишь в том, что нижний ярус на один миллиард лет моложе (включает в себя рифейские отложения). Типичные районы развития геосинклинальных образований, сформировавшихся в результате Байкальской складчатости (байкалид), - складчатые системы Енисейского кряжа и Байкальской горной области. Орогенные формации в указанных районах - разновозрастные (более ранние на Енисейском кряже) и слабо дифференцированные. Специфическими особенностями областей Байкальской складчатостью в их тектонотипе являются длительность формирования, соответствующая практически всему позднему протерозою, преимущественно осадочный состав мощных накоплений неглубокого моря, угнетённость эвгеосинклинальных зон и ограниченность гранитообразования, уступающая по масштабам подобному процессу в эпоху каледонской складчатости. Байкалиды образуют древние ядра многих палеозойских складчатых систем: Урала, Таймыра, Центрального Казахстана, Северного Тянь-Шаня, значительные пространства фундамента Западносибирской плиты и др.



Салаирская. Проявилась также в виде двух фаз: более распространённая ранняя (Є1-2) и поздняя (O2).

Каледонская. Завершилась к концу S. Делится на несколько фаз. Распространены весьма широко. Каледонская тектономагматическая эпоха характеризовалась не только усилением магматизма, но и привела к подъему над уровнем моря и объединению северных материков в новый, подобный южной Гондване суперматерик – Лавразию. Последний отделялся от Гондваны крупным океаном Тетис [эпоха регрессии]. В результате тектонической и магматической активности, сближения и столкновения континентов в каледонскую эпоху были сформированы высочайшие и протяженные горно-складчатые сооружения. В западном полушарии это Аппалачи, а в Центральной Азии – горные массивы Центрального Казахстана, Алтай, Западный и Восточный Саяны, горы Монголии, а также ныне сглаженные и разрушенные горные сооружения Восточной Австралии, острова Тасмании и Антарктиды.

Герцинская. Завершилась к концу палеозоя. Расположенный между Гондваной и Лавруссия океан Тетис прекратил свое существование. Тогда эти гигантские материки объединились и на планете возник один материк, который. На планете в это время существовал также один океан. Это был гигантский древний Тихий океан или Панталаса. Сближение и столкновение литосферных плит и блоков земной коры привели к возникновению крупных горных сооружений, которые по имени эпохи носят название герцинских горных сооружений. Таковыми являются Тибет, Гиндукуш, Каракорум, Тянь-Шань, Горный и Рудный Алтай, Куньлунь, Урал, горные системы Центральной и Северной Европы, Южной и Северной Америки (Аппалачи, Кордильеры), северо-запада Африки и Восточной Австралии. В результате консолидации устойчивых участков, составляющих литосферные плиты, возникли эпигерцинские плиты или молодые платформы. К их числу относятся часть Западно-Европейской платформы, Скифская, Туранская и Западно-Сибирская плиты и др.

Мезозойская. Завершилась к концу палеозоя. Верхний ярус представленглыбовыми кайнозойскими образованиями.

Альпийская. Завершилась в палеогене. Один из районов типичного проявления Альпийской складчатости - Альпы, в Европе - Пиренеи, Андалусские горы, Апеннины, Карпаты, Динарские горы, Балканы; в Северной Африке - горы Атлас; в Азии - Кавказ, Понтийские горы и Тавр, Туркмено-Хорасанские горы, Эльбурс и Загрос, Сулеймановы горы, Гималаи, складчатые цепи Бирмы, Индонезии, Камчатки, Японских и Филиппинских островов; в Северной Америке - складчатые хребты Тихоокеанского побережья Аляски и Калифорнии; в Южной Америке - Анды; архипелаги, обрамляющие Австралию с востока, в т.ч. острова Новая Гвинея и Новая Зеландия. Альпийская складчатость проявилась не только в пределах геосинклинальных областей в виде эпигеосинклинальных складчатых сооружений, но местами затронула и соседние платформы - Юрские горы и часть Пиренейского полуострова (Иберийские цепи) в Западной Европе, южная часть гор Атлас в Северной Африке, Таджикскую депрессию и юго-западной отроги Гиссарского хребта в Средней Азии, Восточных Скалистых гор в Северной Америке, Патагонские Анды в Южной Америке, Антарктический полуостров в Антарктиде и др.

Говоря о субдукционных процессах, следует сказать о судьбе осадков, которые перекрывают океаническую литосферу. Край плиты, под которую субдуцирует океаническая, подрезает осадки, скопившиеся на ней, как нож бульдозера, деформирует эти отложения и приращивает их к континентальной плите в виде аккреционного клина . Вместе с тем какая-то часть осадочных отложений погружается вместе с плитой в глубины мантии.

Также следует упомянуть о столкновении, или коллизии , двух континентальных плит, которые в силу относительной легкости слагающего их материала не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением. Так, например, возникли Гималайские горы, когда 50 млн лет назад Индостанская плита столкнулась с Азиатской. Так сформировался Альпийский горно-складчатый пояс при коллизии Африкано-Аравийской и Евразийской континентальных плит.

(периоды), продолжительность, млн. лет.

Главнейшие события

истории Земли

Тектонические циклы (эпохи горообразования)

Характерные полезные

ископаемые

Кайнозойская эра 70 млн. лет

Антропоген или четвертичный

(2 млн. лет.)

Общее поднятие суши. Образование покровных ледников в Северном полушарии. Появление человека

Альпийская

Торф, золото, алмазы,

драгоценные камни

Неогеновый

(25 млн. лет.)

Возникновение молодых гор в областях альпийской складчатости. Горообразовательные процессы продолжаются до сих пор, о чем свидетельствуют землетрясения и вулканизм. Распространение птиц, млекопитающих, цветковых растений

Альпийская

Бурые угли, нефть, янтарь

Палеогеновый

(41 млн. лет.)

Разрушение гор мезозойской складчатости. Начало альпийской складчатости. Широкое развитие цветковых растений, птиц и млекопитающих

Альпийская

Фосфориты,

бурые угли,

Мезозойская эра 165 млн. лет

Меловой

(75 млн. лет.)

Возникновение молодых гор в областях мезозойской складчатости. Вымирание рептилий. Развитие птиц и млекопитающих

Нефть, горючие сланцы, мел, уголь,

фосфориты,

руды цветных металлов

Юрский

(50 млн. лет.)

Образование современных океанов. Жаркий и влажный климат на большей части суши. Продолжение мезозойской эпохи складчатости. Господство гигантских пресмыкающихся (динозавров), голосеменных растений

Газ, каменные угли, нефть, фосфориты

Триасовый

(40 млн. лет.)

Наибольшее за всю историю Земли отступание моря, поднятие суши, изменение климата, образование обширных пустынь. Разрушение гор каледонской и герцинской складчатостей, начало мезозойской эпохи складчатости. Начало господство гигантских пресмыкающихся, голосеменных растений. Появление первых млекопитающих

Каменные соли

Палеозойская эра 330 млн. лет

Пермский

(45 млн. лет.)

Возникновение молодых складчатых гор в областях герцинской складчатости. Поднятие древних платформ на материках, оледенение Южного полушария. Сухой климат на большей части суши. Появление голосеменных растений

Герцинская

Каменные и

калийные соли, гипсы

Каменноугольный (карбон)

(65 млн. лет.)

Широкое распространение болотистых низменностей в следствии жаркого и влажного климата на большей части суши. Интенсивное горообразование эпохи герцинской складчатости (Аппалачи, Урал, Тянь-Шань и др.), формирование фундамента молодых платформ (Западно-Сибирская). Древовидные папоротники. Первые пресмыкающиеся, расцвет земноводных

Герцинская

Каменный уголь, нефть, рудные полезные

ископаемые.

Девонский

(55 млн. лет.)

Уменьшение площади морей, жаркий климат, первые пустыни. Начало герцинской складчатости. Погружение древних платформ, расколы земной коры, извержение лав, образование базальтовых покровов-траппов. Появление земноводных и рыб

Герцинская

Соли, нефть

Силурийский

(35 млн. лет)

Возникновение молодых складчатых гор в областях каледонской складчатости. Первые наземные растения (плауны и папоротники)

Каледонская

Руды цветных металлов

Ордовикский

(60 млн. лет.)

Уменьшение площади морских бассейнов, изменение климата, продолжение каледонской складчатости. Появление первых беспозвоночных.

Каледонская

Осадочные породы

Кембрийский

(70 млн. лет.)

Возникновение молодых гор в областях байкальской складчатости. Затопление обширных пространств морями, начало платформенного этапа в развитии земной коры, разрушение древних гор, образованных в архейскую и протерозойскую эры. Расцвет морских беспозвоночных животных Байкальский

Байкальская

Каменная соль, гипс, фосфориты.

Протерозойская эра

2000 млн. лет

Начало байкальской складчатости. Мощный вулканизм, излияние лав Развитие бактерий и водорослей, появление первых многоклеточных

Байкальская

Железные руды, слюда, графит, драгоценные камни и металлы.

Архейская эра

1800 млн. лет

Преобладание океана, массовое излияние лав, вулканическая деятельность. Образование земной коры Время примитивных бактерий и водорослей

Железные руды

Тесты для самоконтроля

    Установите правильную последовательность в чередовании геологических периодов.

  1. палеоген

2. Укажите метаморфические горные породы

    гнейс, гранит

    доломит, мел

    мрамор, гнейс

    кварцит, пемза

3. К какому геологическому периоду относится время 75 млн. лет?

    палеоген

4. Выберите государства, где могут происходить наиболее разрушительные землетрясения

    Финляндия 2)Гондурас 3)Япония 4)Казахстан

5. Какие платформы или плиты сформировались в архей – протерозойское время?

    Туранская

    Скифская

    Сибирская

    Южно-Китайская

6. Укажите черту, общую для материковой и океанической земной коры:

    имеется гранитный слой;

    средняя мощность составляет 30-40 км;

    характерно трехслойное строение;

    непрерывна под материками и океанами.

7. Выберите горы, которые являются наиболее древними:

  1. Кордильеры;

    Скандинавские;

8. Возраст современных гор совпадает с возрастом складок в областях … складчатости

    байкальской

    герцинской

    мезозойской

    кайнозойской

9. Сейсмические пояса Земли образуются:

    только на границах столкновения литосферных плит

    только на границах раздвижения и разрыва литосферных плит

    на границах столкновения и разрыва литосферных плит

    в областях с наибольшей скоростью перемещения литосферных плит

10. Извержение какого вулкана привело к гибели города Помпеи?

    Этна 2)Гекла

3)Везувий 4)Кракатау

11. Распространение платформенных и складчатых областей на Земле является главным содержанием … карты

1) почвенной 2) физической

3) геологической 4) тектонической

12. К полезным ископаемым преимущественно магматического происхождения относятся

1) каменный и бурый уголь 2) медные и оловянные руды

3) природный газ и нефть 4) поваренная соль и асбест

13. Возраст современных гор совпадает с возрастом складок в областях …. складчатости

1) байкальской 2) герцинской 3) мезозойской 4) кайнозойской

14. В настоящее время зоны рифтовых разломов земной коры на суше наиболее отчетливо выражены на материках

    Австралия и Африка

    Африка и Евразия

    Евразия и Южная Америка

    Южная Америка и Северная Америка

15. В одну складчатость образовались горные системы…

1) Урал и Кордильеры 2) Кордильеры и Анды

3) Анды и Кавказ 4) Кавказ и Урал

Вся геологическая история Земли (около 4,5 миллиарда лет) заключена в крохотной геохронологической таблице, составленной учеными. За это время раскалывались и перемещались материки, а океаны меняли свое местоположение. На поверхности нашей планеты образовывались горы, затем они разрушались, а после на их месте возникали новые горные системы - еще крупнее и еще выше.

В этой статье речь пойдет об одной из самых ранних эпох земной складчатости - о Байкальской. Как долго она длилась? Какие горные системы возникли в это время? И каковы горы Байкальской складчатости - высокие или низкие?

Эпохи складчатости Земли

Вся история горообразования на нашей планете поделена учеными на условные промежутки, периоды, и назвали их складчатостями. Сделали это прежде всего для удобства. Разумеется, никаких пауз в процессе формирования земной поверхности никогда не было.

Всего таких периодов в истории планеты выделяется шесть. Самая древняя складчатость - Архейская, а самая последняя - Альпийская, которая продолжается и в наше время. Ниже перечислены все геологические складчатости Земли в хронологическом порядке:

  • Архейская (4,5-1,2 млрд лет назад).
  • Байкальская (1,2-0,5 млрд лет назад).
  • Каледонская (500-400 млн лет назад).
  • Герцинская (400-230 млн лет назад).
  • Мезозойская (160-65 млн лет назад).
  • Альпийская (65 млн лет назад и до наших дней).

Геоморфологические структуры, которые образовались в ту или иную эпоху горообразования, называют соответствующим образом - байкалидами, герцинидами, каледонидами и т. д.

Байкальская складчатость: хронологические рамки и общие особенности эпохи

Эпоху земного тектогенеза, охватывающую период от 650 до 550 млн лет геологической истории Земли (рифей - кембрий), принято называть Байкальской складчатостью. Она началась примерно 1,2 миллиарда лет назад, а завершилась около 500 миллионов лет назад. Геологическая эпоха была названа в честь озера Байкал, так как именно в это время сформировалась южная часть Сибири. Термин впервые употребил русский геолог Николай Шатский в 30-х годах ХХ века.

В Байкальскую складчатость, вследствие активизации процессов складкообразования, вулканизма и гранитизации в земной коре, сформировался целый ряд новых геологических структур на теле нашей планеты. Как правило, такие образования возникали на окраинах древних платформ.

Типичные складчатости можно встретить на территории России. Это, например, хребет Хамар-Дабан в Бурятии или Тиманский кряж на севере страны. Как же они выглядят внешне? Горы будут высокие или низкие? Давайте ответим и на этот вопрос.

Как выглядят байкалиды

Байкалиды формировались очень давно. Даже по геологическим меркам времени. Поэтому вполне логично, что большая их часть ныне пребывает в полуразрушенном состоянии. Миллионы лет эти структуры подвергались активной денудации: они разрушались ветром, атмосферными осадками, перепадами температур. Таким образом, горы Байкальской складчатости будут низкими или средними по своей высоте.

Действительно, абсолютные высоты байкалид редко когда превышают 2000 метров над уровнем моря. В этом можно легко убедиться, если сопоставить тектоническую и физическую карты Земли. На геологических и тектонических картах горы Байкальской складчатости, как правило, отмечены фиолетовым цветом.

Правда, древние байкалиды во многих местах земного шара были частично регенерированы (омоложены) более поздними альпийскими тектоническими движениями. Так, например, произошло в горах Кавказа и Турции.

С геологическими структурами Байкальской складчатости чаще всего связаны значительные запасы цветных металлов. Так, в их пределах расположены богатейшие месторождения ртути, олова, цинка, меди и олова.

Горы Байкальской складчатости: примеры

Геологические образования этого возраста встречаются в разных уголках планеты. Они есть в России и Казахстане, Иране и Турции, Индии, Франции и Австралии. Байкалиды расположены на берегах Красного моря и частично покрывают территорию Бразилии.

Важно отметить, что термин «Байкальская складчатость» распространен лишь в научной литературе постсоветского пространства. В других странах мира эту эпоху называют по-другому. Так, к примеру, в Европе ей по времени соответствуют Кадомская и Ассинтская складчатости, в Австралии - Луинская, в Бразилии - одноименная Бразильская.

В пределах России самыми известными байкалидами считаются следующие геоморфологические структуры:

  • Восточный Саян.
  • Хамар-Дабан.
  • Байкальский хребет.
  • Енисейский кряж.
  • Тиманский кряж.
  • Патомское нагорье.

Горы Байкальской складчатости в России. Байкальский хребет

Название этого хребта созвучно с названием рассматриваемой нами эпохи горообразования. Поэтому с него мы и начнем характеристику основных байкалид России.

Байкальский хребет окаймляет впадину одноименного озера с северо-западной стороны. Он расположен в пределах Иркутской области и Бурятии. Общая протяженность хребта составляет 300 километров.

На севере геологическую структуру визуально продолжает хребет Акиткан. Средние высоты этой байкалиды колеблются в пределах 1800-2100 метров. Наивысшая точка хребта - вершина Черского (2588 м). Гора названа в честь географа, внесшего огромный вклад в изучение природы Прибайкальского региона.

Восточный Саян

Восточный Саян - крупнейшая горная система в Южной Сибири, протянувшаяся почти на тысячу километров. Пожалуй, самая мощная из числа байкалид России. Наивысшая точка Восточного Саяна достигает 3491 метра (гора Мунку-Сардык).

Восточный Саян сложен преимущественно из твердых кристаллических пород - гнейсов, кварцитов, мрамора и амфиболитов. В его недрах обнаружены крупные месторождения золота, бокситов и графита. Самыми живописными считаются восточные отроги горной системы, прозванные туристами Тункинскими Альпами.

Наиболее развита (в орографическом плане) центральная часть Восточного Саяна. Она состоит из высокогорных массивов, для которых характерны растительность и ландшафты субальпийского типа. В пределах Восточного Саяна широко распространены курумы. Это огромные по площади каменные россыпи, состоящие из грубых обломков скал разного размера.

Горы Бырранга

Бырранга - еще одни интересные горы Байкальской складчатости. Расположены они на северном полуострове Таймыр. Горы представляют собой череду отдельных гряд, холмистых равнин и плато, глубоко изрезанных каньонами и троговыми долинами. Общая протяженность горной системы - около 1100 километров.

«Там царство злых духов, камень, лед и больше ничего», - так писали об этих местах нганасаны, представители одного из коренных народов Сибири. Первым нанес на карту русский путешественник Александр Миддендорф.

Эти горы совсем низкие. Хотя выглядят они довольно внушительно, так как расположены прямо на берегу океана. Высота максимальной их точки составляет всего 1146 метров. Рельеф этой горной системы очень разнообразен. Здесь можно увидеть и крутые, и пологие склоны, плоские и остроконечные вершины, а также огромное разнообразие ледниковых форм.

Енисейский и Тиманский кряжи

Знакомство с байкалидами России мы закончим описанием двух кряжей - Енисейского и Тиманского. Первый из них расположен в пределах и лишь в некоторых местах превышает по высоте тысячу метров. Енисейский кряж сложен древними и очень твердыми породами - конгломератами, сланцами, траппами и песчаниками. Структура богата железными рудами, бокситами и золотом.

Тиманский кряж расположен на севере страны. Он тянется от берегов Баренцева моря и примыкает к Уральским горам. Общая длина хребта - около 950 км. Кряж выражен в рельефе слабо. Наиболее приподнята его центральная часть, где находится наивысшая точка - Четласский камень (высотой всего 471 м). Как и остальные структуры Байкальской складчатости, Тиманский кряж богат полезными ископаемыми (титан, бокситы, агат и прочие).

Тектонические движения, магматизм и осадконакопление. В течение раннего палеозоя земная кора испытала сильные тектонические движения, получившие название каледонской складчатости. Эти движения проявились в геосинклинальных поясах не одновременно и достигли своего максимума в конце силурийского периода. Наиболее широко каледонская складчатость проявилась в Атлантическом поясе, большая северная часть которого превратилась в складчатую область каледонид. Каледонский орогенез сопровождался внедрением различных интрузий.

В тектонических движениях раннего палеозоя наблюдается определенная закономерность: в кембрии и начале ордовика преобладали процессы опускания, а в конце ордовика и в силуре -- процессы воздымания. Эти процессы в первой половине раннего палеозоя вызвали интенсивное осадконакопление в геосинклинальных поясах и на древних платформах, а затем привели к созданию горных цепей каледонид в ряде участков геосинклинальных поясов и к общей регрессии моря с территории древних платформ.

Основными областями осадконакопления были геосинклинальные пояса, где шло накопление очень мощных, многокилометровых вулканогенно-осадочных, терригенных и карбонатных формаций. На древних платформах северного полушария шло образование карбонатных и терригенных осадков. Обширные площади осадконакопления располагались на Сибирской и Китайско-Корейской платформах, а на Восточно-Европейской и Северо-Американской осадконакопление происходило на ограниченных участках. Гондвана была преимущественно областью размыва, и морское осадконакопление происходило на незначительных краевых участках.

Физико-географические условия

Согласно теории тектоники литосферных плит положение и очертания материков и океанов в палеозое отличались от современного. К началу эры и в течение всего кембрия древние платформы (Южно-Американская, Африканская, Аравийская, Австралийская, Антарктическая, Индостанская), повернутые на 180°, были объединены в единый суперконтинент, называемый Гондваной. Этот суперконтинент располагался главным образом в южном полушарии, от южного полюса до экватора, и занимал общую площадь более 100 миллионов кмІ. В Гондване находились разнообразные возвышенные и низменные равнины и горные массивы. Море периодически вторгалось лишь в окраинные части суперконтинента. Остальные меньшие по размерам материки находились в основном в экваториальной зоне: Северо-Американский, Восточно-Европейский и Сибирский.

Там же находились микроконтиненты:

Среднеевропейский, Казахстанский и другие. В окраинных морях располагались многочисленные острова, окаймлённые низменными побережьями с большим числом лагун и дельт рек. Между Гондваной и другими материками был океан, в центральной части которого находились срединно-океанические хребты. В кембрии существовали две наиболее крупные плиты: целиком океаническая Прото-Кула и преимущественно материковая Гондванская плита.

В ордовике Гондвана двигаясь на юг, вышла в район Южного географического полюса (сейчас это северо-западная часть Африки). Происходило поддвигание океанической литосферной плиты Прото-Фараллон (и вероятно Прото-Тихоокеанской плиты) под северную окраину Гондванской плиты. Началось сокращение Прото-Атлантической впадины, расположенной между Балтийским щитом, с одной стороны, и единым Канадо-Грендландским щитом -- с другой стороны, а также сокращение океанического пространства. В течение всего ордовика происходит сокращение океанических пространств и закрытие краевых морей между материковыми фрагментами: Сибирским, Прото-Казахстанским и Китайским. В палеозое (вплоть до силура--начала девона) продолжалась Каледонская складчатость. Типичные каледониды сохранились на Британских островах, Скандинавии, Северной и Восточной Гренландии, в Центральном Казахстане и Северном Тянь-Шане, в Юго-Восточном Китае, в Восточной Австралии, в Кордильерах, Южной Америке, Северных Аппалачах, Срединном Тянь-Шане и других областях. В результате рельеф земной поверхности в конце силурийского периода стал возвышенным и контрастным, особенно на континентах, расположенных в северном полушарии. В раннем девоне происходит закрытие Прото-Атлантической впадины и образования Еврамериканского материка, в результате столкновения Про-Европейского материка с Про-Северо-Американским в районе нынешней Скандинавии и Западной Гренландии. В девоне смещение Гондваны продолжается, в результате Южный полюс оказывается в южной области современной Африки, а возможно и нынешней Южной Америки. В этот период сформировалась впадина океана Тетис между Гондваной и материками вдоль экваториальной зоны, образовались три целиком океанические плиты: Кула, Фараллон и Тихоокеанская (которая погружалась под Австрало-Антарктическую окраину Гондваны).

В среднем карбоне произошло столкновение Гондваны и Евроамерики. Западный край нынешнего Северо-Американского материка столкнулся с северо-восточной окраиной Южно-Американского, а северо-западный край Африки -- с южным краем нынешней Центральной и Восточной Европы. В результате образовался новый суперконтинент Пангея. В позднем карбоне -- ранней перми произошло столкновение Евроамериканского материака с Сибирским, а Сибирского материка с Казахстанским континентом. В конце девона началась грандиозная эпоха Герцинской складчатости с наиболее интенсивным проявлением при формировании горных систем Альп в Европе, сопровождавшихся интенсивной магматической деятельностью. В местах столкновения платформ возникли горные системы (с высотой до 2000--3000 м), некоторые из них просуществовали и до нашего времени, к примеру Урал илиАппалачи. Вне Пангеи находилась только Китайская глыба. К концу Палеозоя в персмком периоде Пангея протягивалась от южного полюса до Северного. Южный географический полюс в это время находился в пределах современной Восточной Антарктиды. Входивший в состав Пангеи Сибирский материк, являвшийся северной окраиной, приближался к Северному географическому полюсу, не доходя до него 10--15° по широте. Северный полюс в течение всего палеозоя находился в океане. В это же время образовался единый океанический бассейн с главной Прото-Тихоокеанской впадиной и единая с ней впадина океана Тетис.

Полезные ископаемые

Раннепалеозойские отложения относительно бедны полезными ископаемыми. В отличие от докембрия в раннем палеозое формировались первые промышленные месторождения горючих полезных ископаемых, фосфоритов, каменных солей. Месторождения металлических полезных ископаемых имеются, но их удельный вес в мировых запасах и добыче минерального сырья невелик.

Горючие полезные ископаемые -- нефть. и горючий газ -- имеют небольшое промышленное значение, их месторождения известны в России на Сибирской платформе, в США, Канаде и на севере Африки. Гораздо большее значение имеют месторождения горючих сланцев Эстонии ордовикского возраста.

Месторождения металлических полезных ископаемых подразделяются на две группы. К первой группе относятся богатые месторождения железных и марганцевых руд осадочного происхождения. Огромные запасы осадочных железных руд имеются на востоке Северной Америки (Аппалачские горы, Ньюфаундленд). Ко второй группе относятся месторождения, связанные с магматическими породами, -- железа, марганца, меди, хрома, никеля, платины и золота (Алтае-Саянская область, Урал, Скандинавские горы).

Из неметаллических полезных ископаемых промышленное значение имеют месторождения каменной соли на юге Сибирской платформы возле Иркутска, в США, в Пакистане. Крупные месторождения фосфоритов сосредоточены в США и Китае. Богатые месторождения фосфоритов известны на хребте Каратау в Средней Азии (кембрий), в Прибалтике (ордовик), в Восточном Саяне и Кузнецком Алатау. Месторождения асбеста и талька, связанные с ультраосновными интрузиями, известны на Урале.

История Земли подразделяется на догеологическую и геологическую.

Догеологическая история Земли. История Земли испытала длительную химическую эволюцию, прежде чем из сгустков космического вещества превратилась в планету. Время, когда в результате аккреции начала образовываться планета Земля отделено от современности не более чем на 4,6 млрд лет, а время, в течение которого происходила аккреция вещества газопылевой туманности, по мнению ряда исследователей, было непродолжительным и составляло не более 100 млн лет. В истории Земли промежуток времени в 700 млн лет – от начала аккрекреции до появления первых датированных пород принято относить к догеологическому этапу развития Земли. Земля освещалась слабыми лучами Солнца, свет от которого в те далекие времена был в два раза слабее современного. Молодая Земля в то время подвергалась усиленной метеоритной бомбардировке и представляла собой холодную неуютную планету, покрытую тонкой коркой базальтов. Земля еще не обладала атмосферой и гидросферой, однако мощные удары метеоритов не только разогревали планету, а, выбрасывая огромное количество газов, внесли свой вклад в зарождение первичной атмосферы, конденсация газов дала начало гидросфере. Временами базальтовая корка раскалывалась, и по трещинам «всплывали» и погружались массивы затвердевшего мантийного вещества. Рельеф земной поверхности напоминал современный лунный, покрытый тонким слоем рыхлого реголита. Предполагают, что около 4,2 млрд лет назад Земля испытала активные тектонические процессы, получившие в геологии название гренландского периода. Земля стала быстро разогреваться. Конвективные процессы – перемешивание веществ Земли, химико-плотностная дифференциация материала земных сфер – обусловили образование первичной литосферы и зарождение океанов и атмосферы. Возникшая первичная атмосфера состояла из двуокиси углерода, двуокиси серы, водяного пара и других компонентов, извергаемых многочисленными вулканами из рифтовых зон. Появились первые метаморфические и осадочные породы – возникла тонкая земная кора. С этого времени (3,8-4 млрд лет назад) начинают отсчет собственно геологической истории Земли.

Геологическая история Земли . Это самый продолжительный этап в развитии Земли. Основные события, происходившие на Земле начиная с этого времени и по современную эпоху, показаны на рис. 3.4.

В геологической истории Земли за длительное время ее существования происходили различные события. Проявились многочисленные геологические процессы, в том числе и тектонические, которые привели к образованию современного структурного облика платформ, океанов, срединно-океанических хребтов, рифтов, поясов и многочисленных полезных ископаемых. Эпохи необычайно интенсивной магматической деятельности сменялись длительными периодами со слабым проявлением вулканической и магматической активности. Эпохи усиленного магматизма характеризовались высокой степенью тектонической активности, т.е. значительными горизонтальными перемещениями континентальных блоков земной коры, возникновением складчатых деформаций, разрывными нарушениями, вертикальными движениями отдельных блоков, а в периоды относительного спокойствия геологические изменения рельефа земной поверхности оказывались слабыми.

Данные о возрасте изверженных пород, полученные различными методами радиогеохронологии, дают возможность установить существование сравнительно коротких эпох магматической и тектонической активности и длительных периодов относительного покоя. Это, в свою очередь, позволяет провести естественную периодизацию истории Земли по геологическим событиям, по степени магматической и тектонической активности.

Сводные данные о возрасте изверженных пород, по сути дела, являются своеобразным календарем тектонических событий в истории Земли. Тектоническая перестройка лика Земли осуществляется периодически этапами и циклами, которые получили название тектогенеза. Эти этапы проявились и проявляются на разных территориях Земли и имеют различную интенсивность. Цикл тектонический – длительные периоды в развитии земной коры, начинающиеся заложением геосинклиналей и заканчивающиеся формированием складчатых структур на обширных площадях земного шара; выделяют каледонский, герцинский, альпийский и др. тектонические циклы. Тектонических циклов в истории Земли выделяют много (имеются сведения о 20 циклах), каждый из которых характеризуется своеобразной магматической и тектонической активностью и составом возникших горных пород, наиболее изученными из которых являются: архейский (Белозерская и Саамская складчатость), раннепротерозойский (Беломорская и Селецкая складчатости), среднепротерозойский (Карельская складчатость), раннерифейский (Гренвильская складчатость), позднепротерозойский (Байкальская складчатость), раннепалеозойский (Каледонская складчатость), позднепалеозойский (Герцинская складчатость), мезозойский (Киммерийская складчатость), кайнозойский (Альпийская складчатость) и др. Каждый цикл завершался замыканием на большей или меньшей части подвижных областей и образованием на их месте горноскладчатых сооружений – байкалид, каледонод, герцинид, мезозоид, альпид. Они последовательно «присоединялись» к древним стабилизировавшимся в докембрии платформенным участкам земной коры, в результате чего происходило разрастание материков.

Рис. 3.4. Наиболее важные события в геологической истории Земли (по Короновскому Н.В., Ясаманову Н.А., 2003)

Рассматривая существующие структуры земной коры, следует учитывать эволюцию геологического процесса, выраженную в усложнении самих геологических явлений и результатов проявления тектонических этапов. Так, первые геосинклинали в начале архея имели очень простое строение, а вертикальные и горизонтальные движения остывших масс не отличались сильной контрастностью. В среднем протерозое древние платформы, геосинклинали, подвижные пояса обрели уже более сложную структуру и значительное разнообразие пород их слагающих. В раннем протерозое оформляются древние платформы. Поздний протерозой и палеозой считаются временем наращивания древних платформ за счет складчатых областей, испытавших процессы орогенеза и платформенный этап. Большинство областеймезозойской складчатости и часть более ранней – герцинской в кайнозое – подвергались внегеосинклинальному (блоковому) орогенезу, так и не успев стать платформами.

Эволюционные этапы в истории Земли проявляются в форме эпох складчатости и горообразования, т.е. орогенезе . Так, в каждом тектоническом этапе выделяют две части: длительного эволюционного развития и кратковременных бурных тектонических процессов, сопровождаемых региональным метаморфизмом, внедрением интрузий кислого состава (граниты и гранодиориты) и горообразованием.

Завершающая часть эволюционного цикла в геологии получила название эпохи складчатости, для которой характерно направленное развитие и превращение геосинклинальной системы (подвижного пояса) в эпигеосинклинальный ороген и переход геосинклинальной области (системы) в платформенный этап развития, или во внегеосинклинальные горные сооружения.

Эволюционные этапы характеризуются следующими особенностями:

– длительное прогибание подвижных (геосинклинальных) областей и накопление в них мощных толщ осадочных и вулканогенно-осадочных толщ;

– выравнивание рельефа суши (преобладают процессы эрозии и смыва горных пород на континенте);

– широкое распространение опускания окраин платформ, прилегающих к геосинклинальным областям, затопление их водами эпиконтинентальных морей;

– выравнивание климатических условий, обусловленное распространением мелких и теплых эпиконтинентальных морей и увлажнение климата материков;

– возникновение благоприятных условий для жизни и расселения фауны и флоры.

Как видно из особенностей этапов развития Земли, общим для них является широкое распространение морских обломочных отложений (терригенные), карбонатных, органогенных и хемогенных. Этапы эволюционного развития Земли в геологии получили название талассократических (от греч. «талясса» – море, «кратос» – сила), когда области платформ активно прогибались и затапливались морем, т.е. развивались крупнейшие трансгрессии. Трансгрессия – разновидность процесса наступания моря на сушу, вызванного опусканием последней, подъемом дна или увеличением объема воды в бассейне. Талассократические эпохи отличаются активным вулканизмом, значительным поступлением углерода в атмосферу и океанические воды, накоплением мощных толщ карбонатных и терригенных морских осадков, а также формированием и накоплением угля в прибрежных зонах, нефти в теплых эпиконтинентальных морях.

Эпохи складчатости и горообразования имеют следующие характерные черты:

– широкое развитие горообразовательных движений в подвижных (геосинклинальных) областях, колебательных движений на материках (платформах);

– проявление мощного интрузивного и эффузивного магматизма;

– поднятие окраины платформ, прилегающих к эпигеосинклинальным областям, регрессии эпиконтинентальных морей и усложнение рельефа суши;

– преобладание континентального климата, усиление зональности, расширение аридных зон, увеличение пустынь и появление областей материкового оледенения;

– вымирание господствующих групп органического мира вследствие ухудшения условий для его развития, обновление целых групп животных и растений.

Эпохи складчатости и горообразования характеризуются теократическими условиями (буквально – господство суши) с развитием континентальных отложений; очень часто в разрезах присутствуют красноцветные образования (со слоями карбонатных, загипсованных и засоленных пород). Эти породы отличаются разнообразным генезисом: континентальный и переходный от континентального к морскому.

В геологической истории Земли выделяют ряд характерных и крупных этапов ее развития.

Древнейший геологический этапархейский (4,0-2,6 млрд лет назад). В это время бомбардировка метеоритами Земли пошла на убыль и начали формироваться фрагменты первой континентальной коры, которая постепенно наращивалась, но продолжала испытывать раздробление. В глубоком архее, или в катархее, на рубеже 3,5 млрд лет формируется внешнее жидкое и твердое внутреннее ядро приблизительно тех же размеров, что и в настоящее время, о чем свидетельствует наличие в это время магнитного поля сходного с современным по своим характеристикам. Около 2,6 млрд лет назад отдельные крупные массивы континентальной коры «спаялись» в огромный суперконтинент, получивший название Пангеи 0. Этому суперконтиненту, вероятно, противостоял суперокеан Панталасса с корой океанического типа, т.е. не имеющий гранитно-метаморфического слоя, свойственного континентальной коре. Последующая геологическая история Земли состояла в периодическом раскалывании суперконтинента, образовании океанов, их последующем закрытии с погружением океанической коры под более легкую континентальную, формированием нового суперконтинента – очередной Пангеи – и ее новым раздроблением.

Исследователи сходятся во мнении, что в раннем архее Земля сформировала основной объем литосферы (80% от ее современного объема) и все многообразие горных пород: магматических, осадочных, метаморфических, а также ядра протоплатформ, геосинклинали. Возникли невысокие горно-складчатые структуры, первые авлакогены, рифты, прогибы, глубоководные впадины.

В геологическом развитии последующих этапов прослеживается наращивание континентов за счет закрытия геосинклиналей и перехода их в платформенную стадию. Наблюдается раскол древней континентальной коры на плиты, заложение молодых океанов, горизонтальные перемещения на значительные расстояния отдельных плит до их столкновения и надвигания, и, как следствие, – происходит увеличение мощности литосферы.

Раннепротерозойский этап (2,6-1,7 млрд лет) начало распада на отдельные крупные континентальные массивы огромного суперматерика Пангея-0, просуществовавшего около 300 млн лет. Океан развивается уже по теории Тектоники литосферных плит – спрединг, процессы субдукции, формирование активных и пассивных континентальных окраин, вулканических дуг, окраинных морей. Это время знаменуется появлением в атмосфере свободного кислорода благодаря фотосинтезирующим цианобионтам. Начинают формироваться красноцветные породы, содержащие окисное железо. Примерно на рубеже 2,4 млрд лет зафиксировано появление первого в истории Земли обширного покровного оледенения, названного гуронским (по имени озера Гурон в Канаде, на побережье которого были обнаружены древнейшие ледниковые отложения – морены). Около 1,8 млрд лет назад замыкание океанических бассейнов привело к созданию очередного суперматерика – Пангеи-1 (по Хаину В.Е., 1997) или Моногеи (по Сорохтину О.Г., 1990). Органическая жизнь развивается очень слабо, но появляются организмы, в клетках которых уже обособилось ядро.

Позднепротерозойский ,илирифейскр-вендский этап (1,7-0,57 млрд лет.). Суперматерик Пангея-1 просуществовал почти 1 млрд лет. В это время отложения накапливались либо в континентальных условиях, либо в мелководных морских, о чем свидетельствует очень незначительное распространение пород офиолитовой формации, характерных для коры океанического типа. Палеомагнитными данными и геодинамическим анализом датируется время начала распада суперматерика Пангея-1 – около 0,85 млрд лет назад между континентальными блоками формируются океанические бассейны, ряд из которых замыкается к началу кембрия, увеличив тем самым площадь континентов. Во время распада суперматерика Пангея-1 океаническая кора погружается под континентальную, формируются активные континентальные окраины с мощным вулканизмом, окраинными морями, островными дугами. По краям увеличивающихся в размерах океанов образовывались пассивные окраины с мощной толщей осадочных пород. Отдельные крупные блоки континентов в той или иной степени были унаследованы и в более позднее палеозойское время (например, Антарктида, Австралия, Индостан, Северная Америка, Восточная Европа и т.д., а также Протоатлантический и Прототихий океан) (рис. 3.5). В венде произошло второе крупнейшее покровное оледенение – лапландское. На рубеже венда и кембрия – около 575 млн лет. назад – в органическом мире происходят важнейшие изменения – появляется скелетная фауна.

На протяжении палеозойского этапа (575-200 млн лет)сохранялась тенденция, заложенная при распаде суперматерика Пангея-1. В начале кембрия начали зарождаться впадины Атлантического океана (океан Япетус), Средиземноморского пояса (океан Тетис) и Древнеазиатский океан на месте Урало-Монгольского пояса. Но в середине палеозоя началось новое объединение континентальных глыб, начались новые горообразовательные движения (начавшиеся в каменноугольном периоде и закончившиеся на рубеже палеозоя и мезозоя, получившие название герцинских движений), закрылся Проатлантический океан Япетус и Древнеазиатский океан с объединением Восточно-Сибирской и Восточно-Европейской платформ через складчатые сооружения Урала и фундамент будущей Западно-Сибирской плиты. В результате в позднем палеозое образовался очередной гигантский суперконтинент Пангея-2, который был впервые выделен А. Вегенером под названием Пангея.

Рис. 3.5. Реконструкция материков позднепротерозойского суперконтинента Пангея-1 по палеомагнитным данным (по Пиперу И.Д. из кн. Карлович И.А., 2004)

Одна его часть – Североамериканская и Евразиатская плиты – объединилась в суперматерик, названный Лавразией (иногда Лавруссией), другая – Южноамериканская, Африкано-Аравийская, Антарктическая, Австралийская и Индостанская – в Гондвану. Евразиатскую и Африкано-Аравийскую плиты разделял океан Тетис, раскрывавшийся к востоку. Около 300 млн лет назад в высоких широтах Гондваны возникло третье крупное покровное оледенение, просуществовавшее до конца каменноугольного периода. Затем наступил период глобального потепления, приведший к полному исчезновению ледникового покрова.

В пермском периоде завершается герцинский этап развития – время активного горообразования, вулканизма, в течение которого возникли крупные горные хребты и массивы – Уральские горы, Тянь-Шань, Алай и др., а также более устойчивые области – Скифская, Туранская и Западно-Сибирская плиты (так называемые эпигерцинские платформы).

Важным событием начала палеозойской эры стало повышение относительного содержания кислорода в атмосфере, достигшего примерно 30% от современного, и бурное развитие жизни. Уже в начале кембрийского периода существовали все типы беспозвоночных и хордовых и, как отмечалось выше, возникла скелетная фауна; 420 млн лет назад появились рыбы, спустя еще 20 млн лет растения вышли на сушу. С каменноугольным периодом связан расцвет наземной биоты. Древесные формы – плауновидные и хвощевидные – достигали 30-35-метровой высоты. Огромная биомасса отмерших растений накапливалась и со временем превратилась в залежи каменного угля. В конце палеозоя ведущее место в животном мире заняли парарептилии (котилозавры) и рептилии. В пермский период (примерно 250 млн лет назад) появились голосеменные растения. Однако в конце палеозоя произошло массовое вымирание биоты.

На протяжении мезозойского этапа (250-70 млн лет) в геологической истории Земли произошли значительные изменения. Тектонические процессы охватили платформы и складчатые пояса. Особенно сильно тектонические движения проявились на территории Тихоокеанского, Средиземноморского и частично Урало-Монгольского поясов. Мезозойская эпоха горообразования получила название Киммерийской, а структуры, созданные ею, – киммериды или мезозоиды. Наиболее интенсивно складчатые процессы протекали в конце триаса (древнекиммерийская фаза складчатости) и в конце юры (новокиммерийская фаза). К этому времени приурочены магматические интрузии. Возникли складчатые структуры в Верхояно-Чукотской и Кордильерской областях. Эти участки превратились в молодые платформы и объединились с докембрийскими платформами. Сформировались структуры Тибета, Индокитая, Индонезии, усложнилось строение Альп, Кавказа и др. Почти все платформы суперматерика Пангеи-2 в начале мезозойской эры испытали континентальный режим развития. С юрского периода они начали опускаться, и в меловом периоде произошла величайшая трансгрессия моря в северном полушарии. Мезозойская эра определила раскол Гондваны и образование новых океанов – Индийского и Атлантического. В местах раскола земной коры происходил сильный трапповый вулканизм – излияние базальтовой лавы, охвативший в триасе Сибирскую платформу, Южную Америку и Южную Африку, а в мелу – и Индию. Траппы обладают значительной мощностью (до 2,5 км). Например, на территории Сибирской платформы траппы распространены на площади свыше 500 тыс. км2.

На территории Альпийско-Гималайского и Тихоокеанского складчатых поясов активно проявились тектонические движения, которые вызвали разные палеогеографические обстановки. На древних и молодых платформах в триасе накопились породы красноцветной континентальной формации, а в меловой период образовались формации карбонатных пород, в прогибах происходило накопление мощных толщ угля.

В триасовом периоде началось образование Северного океана, который в то время еще не покрылся льдом, так как средняя годовая температура на Земле в мезозое превышала 20оС и на полюсах отсутствовали ледовые шапки.

После палеозойских масштабных вымираний мезозой характеризуется быстрым эволюционированием новых форм растительного и животного мира. Мезозойские рептилии были самыми крупными в истории Земли. Среди растительного мира преобладала голосеменная растительность, позже появились цветковые и главенствующая роль перешла к покрытосеменной растительности. В конце мезозоя произошло «великое мезозойское вымирание», когда исчезли около20% семейств и более 45% разных родов. Полностью исчезли белемниты и аммониты, планктонные фораминиферы, динозавры.

Кайнозойский этап развития Земли (70 млн лет – до настоящего времени). В кайнозойскую эру происходили очень интенсивно как вертикальные, так и горизонтальные движения на континентах и в океанских плитах. Тектоническая эпоха, проявившаяся в кайнозойскую эру, носит название Альпийской. Наиболее активно она протекала в конце неогена. Альпийский тектогенез охватил практически весь лик Земли, но наиболее сильно – в пределах Средиземноморского и Тихоокеанского подвижных поясов. Альпийские тектонические движения отличаются от герцинских, каледонских и байкальских значительной амплитудой поднятий как отдельных горных систем, так и континентов и опусканий межгорных и океанических впадин, расколом континентов и океанических плит и их горизонтальными перемещениями.

В конце неогена на Земле сформировался современный облик континентов и океанов. В начале кайнозойской эры на континентах и в океанах усилился рифтогенез, а также значительно активизировался процесс перемещения плит. К этому времени относится отделение Австралии от Антарктиды. На палеоген приходится завершение формирования северной части Атлантического океана, южная и центральная части которого были полностью раскрыты в меловом периоде. В конце эоцена Атлантический океан был почти в современных границах. С перемещением литосферных плит в кайнозое связывают дальнейшее развитие Средиземноморского и Тихоокеанского поясов. Так, активное движение Африканской и Аравийской плит к северу привело к столкновению их с Евразийской плитой, это обусловило почти полное закрытие океана Тетис, остатки которого сохранились в границах современного Средиземноморского моря.

Палеомагнитный анализ горных пород на континентах и данные магнитометрических замеров дна морей и океанов позволили установить ход изменения положения магнитных полюсов с раннего палеозоя по кайнозой включительно и проследить путь передвижения континентов. Оказалось, что положение магнитных полюсов носит инверсионный характер. В раннем палеозое магнитные полюса занимали места в центральной части материка Гондваны (район современного Индийского океана – южный полюс) и в окрестностях северного побережья Антарктиды (море Росса – северный полюс) Основное количество материков в то время группировалось в южном полушарии ближе к экватору. Совсем другая картина с магнитными полюсами и материками сложилась в кайнозое. Так, южный магнитный полюс стал располагаться северо-западнее Антарктиды, а северный – северо-восточнее Гренландии. Материки расположились в основном в северном полушарии и тем самым «освободили» южное полушарие для океана.

В кайнозойскую эру продолжился спрединг дна океана, унаследованный с мезозойской и палеозойской эр. Происходило поглощение части литосферных плит в зонах субдукции. Например, на северо-востоке Евразии в антропогене (по Сорохтину И.Г., Ушакову С.А., 2002) произошло погружение континентальной и части океанской плит общей площадью около 120 тыс. км2. Наличие срединно-океанических хребтов и полосовых магнитных аномалий, открытых геофизиками во всех океанах, свидетельствует о спрединге морского дна как ведущем механизме перемещения океанических плит.

В кайнозойскую эру обозначилось разделение плиты Фараллон, расположенной на Восточно-Тихоокеанском поднятии, на две плиты - Наску и Кокос. В начале неогенового периода окраинные моря и островные дуги по западной периферии Тихого океана приобрели примерно современный облик. В неогене на островных дугах усилился вулканизм, который продолжает действовать и в настоящее время. Например, на Камчатке извергается более 30 вулканов.

На протяжении кайнозойской эры очертания материков в северном полушарии изменились таким образом, что увеличилась изоляция арктического бассейна. Поступление теплых тихоокеанских и атлантических вод в него сократилось, уменьшился вынос льда.

В течение второй половины кайнозойской эры (неогеновый и четвертичный периоды) происходило следующее: 1) увеличение площади материков и, соответственно, уменьшение площади океана; 2) увеличение высоты материков и глубин океанов; 3) охлаждение земной поверхности; 4) изменение состава органического мира, и усиление его дифференциации.

В результате Альпийского тектогенеза возникли альпийские складчатые сооружения: Альпы, Балканы, Карпаты, Крым, Кавказ, Памир, Гималаи, Корякский и Камчатский хребты, Кордильеры и Анды. Развитие горных хребтов в ряде мест продолжается и в настоящее время. Об этом свидетельствуют поднятия горных хребтов, высокая сейсмичность территорий средиземноморского и Тихоокеанского подвижных поясов, активный вулканизм, а также продолжающийся процесс опускания межгорных впадин (например, Куринской на Кавказе, Ферганской и Афгано-Таджикской в Средней Азии).

Для гор альпийского тектогенеза отличительным является проявление горизонтальных смещений молодых образований в виде надвигов, покровов, шарьяжей вплоть до одностороннего опрокинутого залегания в сторону жестких плит. Например, в Альпах горизонтальные перемещения осадочных образований достигают в неогене десятков километров (разрез по Сиплонскому туннелю). Механизм образования складчатых систем, дивергентное опрокидывание складок на Кавказе, в Карпатах и др. объясняется сжатием геосинклинальных систем за счет движения литосферных плит. Примером сжатия участков земной коры, проявившегося в мезозойскую, и особенно в кайнозойскую, эры служат Гималаи со скучиванием хребтов и формированием мощной литосферы, обусловленными столкновением Гималаев и Тянь-Шаня, либо давлением Аравийской и Индостанской плит с юга. Причем движение установлено не только для целых плит, но и для отдельных хребтов. Так, инструментальные наблюдения за хребтами Петра I и Гиссарским показали, что первый движется навстречу отрогам Гиссарского хребта со скоростью 14-16 мм в год. Если подобные горизонтальные движения сохранятся, то в ближайшем геологическом будущем межгорные равнины и впадины в Узбекистане, Таджикистане, Киргизии исчезнут, и они превратятся в горную страну, подобную Непалу.

Альпийские структуры были сжаты во многих ме­стах, и океаническая кора оказалась надвинутой на континентальную (например, в районе Омана на востоке Аравийского полуострова). Часть молодых платформ в новейшее время испытала резкое омоложение рельефа путем глыбовых подвижек (Тянь-Шань, Алтай, Саяны, Урал).

Оледенение в четвертичном периоде охватило 60% территории Северной Америки, 25% Евразии и около 100% Антарктиды, включая ледники шельфового пояса. Принято различать оледенение наземное, подземное (вечная мерзлота) и горное. Наземное оледенение проявилось в субарктике, в умеренном поясе и в горах. Для этих поясов было характерно обилие осадков и господство отрицательных температур.

В Северной Америке выделяют следы шести оледенений – Небрасское, Канзасское, Айовское, Иллинойское, Ранневисконсинское и Поздневисконсинское. Центр Северо-Американского оледенения располагался в северной части Кордильер, п-ов Лаврентия (Лабрадор и Кивантин) и Гренландии.

Центр Европейского оледенения охватывал огромную территорию: Скандинавию, горы Ирландии, Шотландию, Великобританию, Новую Землю и Полярный Урал. В европейской части Евразии, по крайней мере, шесть раз, а в Западной Сибири пять раз, происходило оледенение (табл. 3.3).

Таблица 3.3

Ледниковые и межледниковые эпохи России (по Карлович И.А., 2004)

Европейская часть

Западная часть

Ледниковая

Межледниковая эпоха

Ледниковая эпоха

Межледниковая эпоха

Поздневалдайская (Осташковская) Ранневапдайская (Калининская)

Мгинская

(Микулинская)

Сартанская

Зырянская

Казанцевская

Московская

(Тазовская)

Рославская

Тазовская

Мессовско-Ширтинская

Днепровская

Лихвинская

Самаровская

Тобольская

Беловежская

Демьянская

Березинская

Заряжская

Средняя продолжительность ледниковых эпох составляла 50-70 тыс. лет. Самым крупным оледенением считается Днепровское (Самаровское). Протяженность Днепровского ледника в южном направлении достигала 2200 км, в восточном – 1500 км и в северном – 600 км. А самым маленьким оледенением считается Поздневалдайское (Сартанское). Около 12 тыс. лет назад последний ледник покинул территорию Евразии, а в Канаде он стаял около 3 тыс. лет назад и сохранился в Гренландии и в Арктике.

Известно, что причин оледенения много, но главными считают космические и геологические. После того, как в олигоцене произошла общая регрессия морей и поднятие суши, климат на Земле стал более сухим. В это время наметился подъем суши вокруг Ледовитого океана. Теплые морские течения, а также воздушные потоки изменили свое направление. Почти аналогичное положение сложилось в районах, прилегающих к Антарктиде. Предполагают, что в олигоцене высота гор Скандинавии была несколько больше современной. Все это обусловило наступление здесь похолодания. Ледниковый период плейстоцена охватил местами северное и южное полушария (Скандинавское и Антарктическое оледенение). Оледенения в северном полушарии повлияли на состав и расселение наземных групп млекопитающих, и особенно древнего человека.

В кайнозойскую эру место исчезнувших в мезозойскую эру организмов занимают совершенно другие формы растительного и животного мира. Среди растительности господствуют покрытосеменные. Среди морских беспозвоночных на ведущие позиции выдвигаются брюхоногие и двустворчатые моллюски, шестилучевые кораллы и иглокожие, костистые рыбы. Из пресмыкающихся остались только змеи, черепахи и крокодилы, пережившие катастрофу в глубинах морей и океанов. Быстро распространяются млекопитающие – не только на суше, но и в морях.

Очередное похолодание на рубеже неогена и четвертичного периода способствовало исчезновению некоторых форм теплолюбивых и появлению новых животных, приспособленных к суровому климату – волки, северные олени, медведи, зубры и др.

В начале четвертичного периода животный мир Земли постепенно приобрел современный облик. Самым важным событием четвертичного периода явилось появление человека. Этому предшествовала длительная эволюция приматов (табл. 3.4) от дриопитека (около 20 млн лет назад) до человека разумного (около 100 тыс. лет назад).

Таблица 3.4

Эволюция приматов от дриопитека до современного человека

Эволюция приматов

Дриопитек – древнейший предок человека

20 млн лет назад

Рамапитек – человекообразные обезьяны

12 млн лет назад

Австралопитек – передвижение на двух конечностях

6-1,5 млн лет назад

Человек умелый (Homo habilis) – изготовление

примитивных каменных орудий

2,6 млн лет назад

Человек прямоходящий (Homo erectus) – мог пользоваться огнем

1 млн лет назад

Архантропы – питекантроп, гейдельбергский человек, синантроп

250 тыс. лет назад

Человек разумный (Homo Sapiens) палеоантроп –

неан­дерталец

100 тыс. лет назад

Современный человек (Homo Sapiens Sapiens) –

кроманьонец

40-35 тыс. лет назад

Кроманьонцы по внешнему облику мало отличались от современных людей, умели изготовлять копья, стрелы с каменными наконечниками, каменные ножи, топоры, жили в пещерах. Интервал времени от появления питекантропов до кроманьонцев называют палеолитом (древний каменный век). Его сменяют мезолит и неолит (средний и поздний каменный век). После него наступает век металлов.

Четвертичный период – время становления и развития человеческого общества, время сильнейших климатических событий: наступления и периодической смены ледниковых эпох межледниковьями.


Top