Большой геологический и малый биологический. Большой (геологический) и малый (биогеохимические) круговорот веществ

До возникновения биосферы на Земле были три круговорота веществ: минеральный круговорот - перемещение магматических продуктов из глубин на поверхность и обратно ; газовый круговорот - циркуляция воздушных масс, периодически разогреваемых Солнцем, круговорот воды - испарение воды и перенос ее воздушными массами, выпадение осадков (дождь, снег). Эти три круговорота объединяют единым термином - геологический (абиотический) круговорот. С появлением жизни к газовому, минеральному и водному круговоротам добавился биотический (биогенный) круговорот - круговорот химических элементов, осуществляемый жизнедеятельностью организмов. Вместе с геологическим образовался единый биогеохимический круговорот веществ на Земле.

Геологический круговорот.

Около половины достигающей поверхности Земли солнечной энергии расходуется на испарение воды, выветривание горных пород, растворение минералов, перемещение воздушных масс и вместе с ними паров воды, пыли, твердых частиц выветривания.

Движение воды и ветра приводит к эрозии почв, перемещению, перераспределению и накоплению механических и химических осадков в гидросфере и литосфере. Данный круговорот происходит и в настоящее время.

Большой интерес представляет круговорот воды. Из гидросферы за один год испаряется примерно 3,8 10 14 т воды, а возвращается с осадками в водную оболочку Земли только 3,4 10 14 т воды. Недостающая часть выпадает на сушу. Всего осадков на сушу выпадает около 1 10 14 т, а испаряется примерно 0,6 10 14 т воды. Излишки воды, образующиеся в литосфере, стекают в озера и реки, а затем в Мировой океан (рис. 2.4). Поверхностный сток равен примерно 0,2 10 14 т, оставшиеся 0,2 10 14 т воды поступают в подпочвенные водоносные горизонты, откуда вода поступает в реки, озера и океан, а также пополняет резервуары грунтовых вод .

биотический круговорот . В его основе лежат процессы синтеза органических веществ с последующим их разрушением на исходные минералы. Процессы синтеза и разрушения органических веществ являются фундаментом существования живого вещества и основной особенностью функционирования биосферы.

Жизнедеятельность любого организма невозможна без обмена веществ с окружающей средой. В процессе обмена организм потребляет и усваивает необходимые вещества и выделяет отходы жизнедеятельности, размеры нашей планеты не бесконечны, и в конечном итоге все полезное вещество было бы переработано в бесполезные отбросы. Однако в процессе эволюции был найден великолепный выход: кроме организмов, умеющих строить живое вещество из неживого, появились и другие организмы, разлагающие это сложное органическое вещество на исходные минералы, готовые к новому использованию. «Единственный способ придать ограниченному количеству свойства бесконечного, - писал В.Р. Вильямс, - это заставить его вращаться по замкнутой кривой».

Механизм взаимодействия живой и неживой природы состоит из вовлечения неживой материи в область жизни. После ряда превращений неживой материи в живых организмах происходит возврат ее в прежнее исходное состояние. Такой круговорот возможен из-за того, что живые организмы содержат те же химические элементы, что и неживая природа.

Как же происходит такой круговорот? В. И. Вернадский обосновал, что главным преобразователем энергии, поступающей из космоса (в основном солнечной), является зеленое вещество растений. Только они способны синтезировать первичные органические соединения под воздействием солнечной энергии. Ученый подсчитал, что общая площадь поверхности зеленого вещества растений, поглощающей энергию, в зависимости от времени года составляет от 0,86 до 4,2% от площади поверхности Солнца. В то же время площадь поверхности Земли

Животные, пищей для которых являются растения или другие животные, синтезируют в своем организме новые органические соединения.

Останки животных и растений служат пищей для червей, грибков и микроорганизмов, которые в конечном итоге превращают их в исходные минералы, выделяя при этом углекислый газ. Эти минералы вновь служат первоначальным сырьем для создания первичных органических соединений растениями. Так круг замыкается и начинается новое движение атомов.

Вместе с тем круговорот веществ не является абсолютно замкнутым. Часть атомов выходит из круговорота, закрепляется и организуется новыми формами живых организмов и продуктов их жизнедеятельности. Проникая в литосферу, гидросферу и тропосферу, живые организмы производили и производят огромную геохимическую работу по перемещению и перераспределению имеющихся веществ и созданию новых. В этом суть поступательного развития биосферы, так как при этом расширяется сфера биогеохимических циклов и укрепляется биосфера. Как отмечал В. И. Вернадский, в биосфере наблюдается постоянное биогенное движение атомов в виде «вихрей».

В отличие от геологического биотический круговорот характеризуется незначительным потреблением энергии. Как уже отмечалось, на создание первичного органического вещества расходуется около 1% солнечной энергии, достигающей поверхности Земли. Этой энергии достаточно для функционирования сложнейших биогеохимических процессов на планете.

В биосфере происходит глобальный (большой, или геологический) круговорот веществ, который существовал и до появления первых живых организмов. В него вовлечены самые разнообразные химические элементы. Геологический круговорот осуществляется благодаря солнечной, гравитационной, тектонической и космической видам энергии.

С появлением живого вещества на основе геологического круговорота возник круговорот органического вещества – малый (биотический, или биологический) круговорот.

Биотический круговорот веществ– непрерывный, циклический, неравномерный во времени и пространстве процесс перемещения и превращения веществ, происходящий при непосредственном участии живых организмов. Он представляет собой непрерывный процесс создания и разрушения органического вещества и реализуется при участии всех трех групп организмов: продуцентов, консументов и редуцентов. В биотические круговороты вовлечено около 40 биогенных элементов. Наибольшее значение для живых организмов имеют круговороты углерода, водорода, кислорода, азота, фосфора, серы, железа, калия, кальция и магния.

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот. Общая масса зольных веществ, вовлекаемая ежегодно в биотический круговорот веществ только на суше, составляет около 8 млрд. тонн. Это в несколько раз превышает массу продуктов извержения всех вулканов мира на протяжении года. Скорость круговорота вещества в биосфере различна. Живое вещество биосферы обновляется в среднем за 8 лет, масса фитопланктона в океане обновляется ежедневно. Весь кислород биосферы проходит через живое вещество за 2000 лет, а углекислый газ – за 300 лет.

В экосистемах осуществляются локальные биотические круговороты, а в биосфере – биогеохимические циклы миграции атомов, которые не только связывают все три наружные оболочки планеты в единое целое, но и обуславливают непрерывную эволюцию её состава.

АТМОСФЕРА ГИДРОСФЕРА

­ ¯ ­ ¯

ЖИВОЕ ВЕЩЕСТВО

ПОЧВА

Эволюция биосферы

Биосфера появилась с зарождением первых живых организмов примерно 3,5 млрд. лет назад. В ходе развития жизни она изменялась. Этапы эволюции биосферы можно выделить с учетом характеристики типа экосистем.

1. Возникновение и развитие жизни в воде. Этап связан с существованием водных экосистем. Кислород в атмосфере отсутствовал.



2. Выход живых организмов на сушу, освоение наземно-воздушной среды и почвы и появление наземных экосистем. Это стало возможно благодаря появлению кислорода в атмосфере и озонового экрана. Произошло 2,5 млрд. лет назад.

3. Появление человека, превращение его в биосоциальное существо и возникновение антропоэкосистем произошло 1 млн. лет назад.

4. Переход биосферы под влиянием разумной деятельности человека в новое качественное состояние – в ноосферу.


Ноосфера

Высшим этапом развития биосферы является ноосфера – этап разумного регулирования взаимоотношений между человеком и природой. Этот термин ввел в 1927 году французский философ Э. Леруа. Он считал, что ноосфера включает человеческое общество с его индустрией, языком и прочими атрибутами разумной деятельности. В 30-40-х гг. ХХ века В.И. Вернадский развил материалистические представления о ноосфере. Он считал, что ноосфера возникает в результате взаимодействия биосферы и общества, управляется за счет тесной взаимосвязи законов природы, мышления и социально-экономических законов общества, и подчеркивал, что

ноосфера (сфера разума) – стадия развития биосферы, когда разумная деятельность людей станет главным, определяющим фактором ее устойчивого развития.

Ноосфера – новая, высшая стадия биосферы, связанная с возникновением и развитием в ней человечества, которое, познавая законы природы и совершенствуя технику, становится крупнейшей силой, сопоставимой по масштабам с геологическими, и начинает оказывать определяющее влияние на ход процессов на Земле, глубоко изменяя ее своим трудом. Становление и развитие человечества выразилось в возникновении новых форм обмена веществом и энергией между обществом и природой, во все возрастающем воздействии человека на биосферу. Ноосфера наступит тогда, когда человечество с помощью науки сможет осмысленно управлять природными и социальными процессами. Поэтому нельзя ноосферу считать особой оболочкой Земли.



Науку управления взаимоотношениями между человеческим обществом и природой называют ноогеникой.

Основная цель ноогеники – планирование настоящего во имя будущего, а её главные задачи – исправление нарушений в отношениях человека и природы, вызванных прогрессом техники, сознательное управление эволюцией биосферы. Должно сформироваться плановое, научно обоснованное использование природных ресурсов, предусматривающее восстановление в круговороте веществ того, что нарушил человек, в противоположность стихийному, хищническому отношению к природе, приводящему к ухудшению окружающей среды. Для этого необходимо устойчивое развитие общества, которое удовлетворяет потребности настоящего времени и не ставит под угрозу способность будущих поколений удовлетворять свои потребности.

В настоящее время на планете сформировалась биотехносфера – часть биосферы, коренным образом преобразованная человеком в инженерно-технические сооружения: города, заводы и фабрики, карьеры и шахты, дороги, плотины и водохранилища и т.п.

БИОСФЕРА И ЧЕЛОВЕК

Биосфера для человека является и средой обитания, и источником природных ресурсов.

Природные ресурсы природные объекты и явления, которые человек использует в процессе труда. Они обеспечивают человеку пищу, одежду, жилище. По степени истощения они делятся на исчерпаемые и неисчерпаемые . Исчерпаемые ресурсы подразделяются на возобновимые и невозобновимые . К невозобновимым относят те ресурсы, которые не возрождаются (или возобновляются в сотни раз медленнее, чем расходуются): нефть, каменный уголь, металлические руды и большинство полезных ископаемых. Возобновимые природные ресурсы – почва, растительный и животный мир, минеральное сырьё (поваренная соль). Эти ресурсы постоянно восстанавливаются с разной скоростью: животные – несколько лет, леса – 60-80 лет, почвы, потерявшие плодородие, – в течение нескольких тысячелетий. Превышение темпов расходования над скоростью воспроизводства ведет к полному исчезновению ресурса.

Неисчерпаемые ресурсы включают водные, климатические (атмосферный воздух и энергия ветра) и космические: солнечная радиация, энергия морских приливов и отливов. Однако растущее загрязнение окружающей среды требует осуществления природоохранных мероприятий для сохранения этих ресурсов.

Удовлетворение человеческих потребностей немыслимо без эксплуатации природных ресурсов.

Все виды деятельности человека в биосфере можно объединить в четыре формы.

1. Изменение структуры земной поверхности (распашка земель, осушение водоемов, вырубка лесов, строительство каналов). Человечество становится мощной геологической силой. Человек использует 75% суши, 15% речных вод, каждую минуту вырубается 20 га лесов.

· Геолого-геоморфологические изменения – интенсификация процессов образования оврагов, появление и учащение селей и оползней.

· Комплексные (ландшафтные) изменения – нарушение целостности и естественной структуры ландшафтов, уникальности памятников природы, потеря продуктивных земель, опустынивание.

Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, которые протекают в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот вещество осуществляется при непрерывном поступлении внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, внутри круговорота веществ можно выделить геологический (большой круговорот), биологический (биогеохимический, малый круговорот) и антропогенный круговороты.

Геологический круговорот (большой круговорот веществ в биосфере)

Этот круговорот осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Движущей силой этого процесса являются экзогенные и эндогенные геологические процессы. Эндогенные процессы происходят под влиянием внутренней энергии Земли. Это энергия, которая выделяется в результате радиоактивного распада, химических реакций образования минералов и др. К эндогенным процессам относят, например, тектонические движения, землетрясения. Эти процессы ведут к образования крупных форм рельефа (материки, океанические впадины, горы и равнины). Экзогенные процессы протекают под влиянием внешней энергии Солнца. К ним относятся геологическая деятельность атмосферы, гидросферы, живых организмов и человека. Эти процессы ведут к сглаживанию крупных форм рельефа (речные долины, холмы, овраги и др.).

Продолжается геологический круговорот миллионы лет и заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Символом этого круговорота веществ является спираль, а не круг, т.к. новый цикл круговорота не повторяет в точности старый, а вносит что-то новое.

К большому круговороту относится круговорот воды (гидрологический цикл) между сушей и океаном через атмосферу (рис. 3.2).

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается на 2 млн. лет.

Рис. 3. 2. Круговорот воды в биосфере.

В гидрологическим цикле все части гидросферы связаны между собой. В нем ежегодно участвует более 500 тыс. км3 воды. Движущей силой этого процесса является солнечная энергия. Молекулы воды под действием солнечной энергии нагреваются и поднимаются в виде газа в атмосферу (ежесуточно испаряется – 875 км3 пресной воды). По мере поднятия они постепенно охлаждаются, конденсируются и образуют облака. После достаточного охлаждения облака освобождают воду в виде различных осадков, падающих обратно в океан. Вода, попавшая на землю, может следовать двумя различными путями: либо впитываться в почву (инфильтрация), либо стекать по ней (поверхностный сток). По поверхности вода стекает в ручьи и реки, направляющиеся к океану или другие места, где происходит испарение. Впитавшаяся в почву вода, может удерживаться в ее верхних слоях (горизонтах) и возвращаться в атмосферу путем транспирации. Такая вода называется капиллярной. Вода, которая увлекается силой тяжести и просачивается вниз по порам и трещинам называется гравитационной. Просачивается гравитационная вода до непроницаемого слоя горной породы или плотной глины, заполняя все пустоты. Такие запасы называются грунтовыми водами, а их верхняя граница – уровнем грунтовых вод. Подземные слои породы, по которым медленно текут грунтовые воды называются водоносными горизонтами. Под действием силы тяжести грунтовые воды двигаются по водоносному слою до тех пор, пока не найдут «выход» (например, образуя естественные родники, которые питают озера, реки, пруды, т.е. становятся частью поверхностных вод). Таким образом, круговорот воды включает три основные «петли»: поверхностного стока, испарения-транспирации, грунтовых вод. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды и он играет основную роль в формировании природных условий.

Биологический (биогеохимический) круговорот

(малый круговорот веществ в биосфере)

Движущей силой биологического круговорота веществ является деятельность живых организмов. Он является частью большого и происходит в пределах биосферы на уровне экосистем. Состоит малый круговорот в том, что питательные вещества, вода и углерод аккумулируются в веществе растений (автотрофы), расходуются на построение тел и жизненные процессы, как растений, так и других организмов (как правило, животных - гетеротрофов), которые поедают эти растения. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.



В биогеохимических круговоротах различают резервный фонд (вещества, которые не связаны с живыми организмами) и обменный фонд (вещества, которые связаны прямым обменом между организмами и их непосредственным окружением).

В зависимости от расположения резервного фонда биогеохимические круговороты делят на два типа:

Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа, обладая большим обменным фондом, являются более совершенными. И, кроме того, они способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом.

Интенсивность биологического круговорота определяется температурой окружающей среды и количеством воды. Например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

Круговороты основных биогенных веществ и элементов

Круговорот углерода

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы в другую (рис. 3. 3.).

Рис. 3. 3. Круговорот углерода.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода (CO2). Растения поглощают молекулы углекислого газа, в процессе фотосинтеза. В результате атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

· углерод остается в растениях ® молекулы растений идут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений) ® углерод возвращается в атмосферу в качестве CO2;

· растения съедаются травоядными животными ® углерод возвращается в атмосферу в процессе дыхания животных и при их разложении после смерти; либо травоядные животные будут съедены плотоядными и тогда углерод опять же вернется в атмосферу теми же путями;

· растения после гибели превращаются в ископаемое топливо (например, в уголь) ® углерод возвращается в атмосферу после использования топлива, вулканических извержений и др. геотермальных процессов.

В случае растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов: углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно); углерод может войти в ткани морских растений или животных, тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Скорость круговорота CO2 составляет около 300 лет.

Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания CO2 в атмосфере и развитию парникового эффекта. В настоящее время исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле (в морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15%, в земной коре 47,2%). Соединения кислорода незаменимы для поддержания жизни (играют важнейшую роль в процессах обмена веществ и дыхании, входит в состав белков, жиров, углеводов, из которых «построены» организмы). Главная масса кислорода находится в связанном состоянии (количество молекулярного кислорода в атмосфере составляет всего лишь 0,01% от общего содержания кислорода в земной коре).

Так как кислород содержится во многих химических соединениях, его круговорот в биосфере весьма сложен и главным образом происходит между атмосферой и живыми организмами. Концентрация кислорода в атмосфере поддерживается благодаря фотосинтезу, в результате которого зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Основная масса кислорода продуцируется растениями суши – почти ¾, остальная часть – фотосинтезирующими организмами Мирового океана. Мощным источником кислорода является и фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Кроме того, кислород совершает важнейший круговорот, входя в состав воды. Незначительное количество кислорода образуется из озона под воздействием ультрафиолетовой радиации.

Скорость круговорота кислорода около 2 тыс. лет.

Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот кислорода на значительных территориях. Кроме того, на промышленные и бытовые нужды ежегодно расходуется 25 % кислорода, образующегося в результате ассимиляции.

Круговорот азота

Биогеохимический круговорот азота, так же как и предыдущие круговороты, охватывает все области биосферы (рис. 3.4).

Рис. 3. 4. Круговорот азота.

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул (приблизительно 78% всего объема атмосферы приходится на долю азота). Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, поглощая нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием азота. При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Эта кислота, вступая в реакцию с находящимися в почве карбонатами (например, с карбонатом кальция СаСОз), образует нитраты. Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Кроме того, свободный азот выделяется при горении органических веществ, при сжигании дров, каменного угля, торфа. Помимо этого, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты), переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву (часть его постепенно выделяется в свободном виде).

К процессам, возмещающим потери азота, относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота (последние с водой дают азотную кислоту, превращающуюся в почве в нитраты). Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - клубеньков. Клубеньковые бактерии, усваивая атмосферный азот, перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота.

В связи с тем, что ежегодно с урожаем с полей убираются наиболее богатые белками части растений (например, зерно), почва «требует» вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используют нитрат кальция (Ca(NO)2), нитрат аммония (NH4NO3), нитрат натрия (NANO3), и нитрат калия (KNO3). Также, вместо химических удобрений, используют сами растения из семейства бобовых. Если количество искусственных азотных удобрений, вносимых в почву, излишне велико, то нитраты поступают и в организм человека, где они могут превращаться в нитриты, обладающие большой токсичностью и способные вызывать онкологические заболевания.

Круговорот фосфора

Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. Содержание фосфора в земной коре составляет от 8 - 10 до 20 % (по весу) и находится он здесь в виде минералов (фторапатит, хлорапатит и др.), которые входят в состав природных фосфатов - апатитов и фосфоритов. В биогеохимический круговорот фосфор может попасть в результате выветривания горных пород. Эрозионными процессами фосфор выносится в море в виде минерала апатита. В превращениях фосфора большую роль играют живые организмы. Организмы извлекают фосфор из почв и водных растворов. Далее фосфор передается по цепям питания. С гибелью организмов фосфор возвращается в почву и в илы морей, и концентрируется в виде морских фосфатных отложений, что в свою очередь создает условия для создания богатых фосфором пород (рис. 3. 5.).

Рис. 3.5. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями).

При неправильном применении фосфорных удобрений, в результате водной и ветровой эрозии (разрушение под действием воды или ветра) большое количество фосфора удаляется из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфоросодержащих руд.

С другой стороны, повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение водоемов» и их эвтрофикацию (обогащение питательные веществами).

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

Круговорот серы

Основной резервный фонд серы находится в отложениях, в почве и атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители (рис. 3. 6.).

Рис. 3. 6. Круговорот серы (по Ю. Одуму, 1975).

В природе в большом количестве известны различные сульфиды железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере до сульфатной серы. Сульфаты поглощаются растениями. В живых организмах сера входит в состав аминокислот и белков, а у растений, кроме того, в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются сложными превращениями серы (микроорганизмы, создают многочисленные промежуточные соединения серы). После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до H2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород в атмосфере окисляется и возвращается в почву с осадками. Кроме того, сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

Кроме того, сера в виде SO2, SO3, H2S и элементарной серы выбрасывается вулканами в атмосферу.

Круговорот серы может быть нарушен вмешательством человека. Виной тому становится сжигание каменного угля и выбросы химической промышленности, в результате чего образуется сернистый газ, нарушающий процессы фотосинтеза и приводящий к гибели растительности.

Таким образом, биогеохимические циклы обеспечивают гомеостаз биосферы. При этом они в значительной степени подвержены влиянию человека. И одним из мощнейших антиэкологических действий человека связано с нарушением и даже разрушением природных круговоротов (они становятся ациклическими).

Антропогенный круговорот

Движущей силой антропогенного круговорота является деятельность человека. Данный круговорот включает две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей. Антропогенный круговорот в отличие и геологического и биологического не является замкнутым. Эта незамкнутость становится причиной истощения природных ресурсов и загрязнения природной среды.

Геологический кругооборот веществ имеет наибольшую скорость в горизонтальном направлении между сушей и морем. Смысл большого кругооборота в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан с образованием морских напластований и возвращаются на сушу лишь частично, например, с осадками или с извлеченными человеком из воды организмами. Далее в течение длительного временного отрезка протекают медленные геотектонические изменения - движение материков, поднятие и опускание морского дна, вулканические извержения и т.д., в результате которых образовавшиеся напластования возвращаются на сушу и процесс начинается вновь.

Большой геологический круговорот вещества. Под действием денудационных процессов происходит разрушение горных пород и осадконакопление. Образуются осадочные породы. В областях устойчивого погружения (обычно это океаническое дно) вещество географической оболочки входит в глубокие слои Земли. Далее под действием температуры и давления идут метаморфические процессы, в результате которых образуются горные породы, вещество продвигается ближе к центру Земли. В недрах Земли в условиях очень высоких температур происходит магматизм: породы плавятся, поднимаются в виде магмы по разломам к земной поверхности и выливаются на поверхность при извержениях. Таким образом, осуществляется круговорот вещества. Геологический круговорот осложняется, если учитывать обмен веществом с космическим пространством. Большой геологический круговорот не является замкнутым в том смысле, что какая-то частица вещества, попавшая в недра Земли, совсем не обязательно выйдет на поверхность, и наоборот, частица, поднимающаяся при извержении, могла никогда раньше не находиться на земной поверхности


Основные источники энергии природных процессов на Земле

Излучение Солнца - основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной - количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1370 Вт/м².

Живые организмы используют энергию Солнца (фотосинтез) и энергию химических связей (хемосинтез). Эта энергия может использоваться в различных естественных и искусственных процессах. Треть всей энергии отражается атмосферой, 0,02 % используется растениями для фотосинтеза, а остальное на поддержание многих природных процессов – обогрев земли, океана, атмосферы движение возд. масс. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.

Это огромная энергия ведет к всеобщему потеплению,потому что после того,как прошла через природные процессы излучается обратно и атмосфера не дает ей уйти обратно.

2. Внутренняя энергия Земли; проявление – вулканы, горячие источники


18. Преобразования энергии биотического и абиотического происхождения

В функционирующей природной экосистеме не существует отходов. Все организмы, живые или мертвые, потенциально являются пищей для других организмов: гусеница ест листву, дрозд питается гусеницами, ястреб способен съесть дрозда. Когда растения, гусеница, дрозд и ястреб погибают, они в свою очередь перерабатываются редуцентами.

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

Организмы природных экосистем вовлечены в сложную сеть многих связанных между собой пищевых цепей. Такая сеть называется пищевой сетью.

Пирамиды энергетических потоков: С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.

Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и 10% передается на следующий уровень.

Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 - 5 звеньев.

Энергетика ландшафтной сферы Земли:

1) солнечная энергия: тепловая, лучистая

2) поток тепловой энергии из недр Земли

3) энергия приливных течений

4) тектоническая энергия

5) ассимиляция энергии при фотосинтезе


Круговорот воды в природе

Круговорот воды в природе – процесс циклического перемещения воды в земной биосфере. Состоит из испарения, конденсации и осадков (атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично - просачиваются в землю и образуют подземные воды), а также процессы дегазации мантии: из мантии непрервыно поступает вода. вода обнаружена даже на огромной глубине.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше - положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

75% поверхности Земли покрыты водой. Водная оболочка Земли – гидросфера. Большую ее часть составляет соленая вода морей и океанов, а меньшую - пресная вода озер, рек, ледников, грунтовые воды и водяной пар.

На земле вода существует в трех агрегатных состояниях: жидком, твердом и газообразном. Без воды невозможно существование живых организмов. В любом организме вода является средой, в которой происходят химические реакции, без которых не могут жить живые организмы. Вода является самым ценным и самым необходимым веществом для жизнедеятельности живых организмов.

Различают несколько видов круговоротов воды в природе:

Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.

В конце концов, осадки в процессе движения опять достигают Мирового океана.

Скорость переноса различных видов воды изменяется в широких пределах, так и периоды расходов, и периоды обновления воды также разные. Они изменяются от нескольких часов до нескольких десятков тысячелетий. Атмосферная влага, которая образуется при испарении воды из океанов, морей и суши и существует в виде облаков, обновляется в среднем через восемь дней.

Воды, входящих в состав живых организмов, восстанавливаются в течение нескольких часов. Это наиболее активная форма водообмена. Период обновления запасов воды в горных ледниках составляет около 1 600 лет, в ледниках полярных стран значительно больше - около 9 700 лет.

Полное обновление вод Мирового океана происходит примерно через 2 700 лет.


Эффекты взаимодействия солнечного излучения, движущейся и вращающейся земли.

В данном вопросе следует рассмотреть сезонную переменчивость: зима/лето. Расписать, что из-за вращения и движения Земли, солнечное излучение поступает неравномерно, а значит, климатические условия меняются с широтой.

Земля наклонена к плоскости эклиптики 23,5 градуса.

Лучи проходят под разными углами. Радиационный баланс. Важно не только, сколько получает,но и сколько теряет, и сколько остается с учетом альбедо.


Центры действия атмосферы

Крупные области устойчивого высокого или низкого давления, связанные с общей циркуляцией атмосферы – центры действия атмосферы . Они определяют господствующее направление ветров и служат очагами формирования географических типов воздушных масс. На синоптических картах они выражаются замкнутыми линиями – изобарами.

Причины : 1) неоднородность Земли;

2) различие физ. свойств суши и воды (теплоемкость)

3) различие в альбедо поверхностей (R/Q): вода – 6%, экв. леса – 10-12%, шир.леса – 18%, луг – 22-23%, снег – 92%;

4) F Кориолиса

Это вызывает ОЦА.

Центры действия атмосферы :

перманентные – в них высокое или низкое давление существует круглый год:

1. экваториальная полоса пониж. давления, ось которой несколько мигрирует от экватора вслед за Солнцем в сторону летнего полушария - Экваториальная депрессия (причины: большое количество Q и океаны);

2. по одной субтропической полосе повыш. давления в Сев. и Юж. полушарии; несколько мигрируют летом в более высокие субтропич. широты, зимой - в более низкие; распадаются на ряд океанич. антициклонов: в Сев. полушарии - Азорский антициклон (особенно летом) н Гавайский; в Юж.- Южно-Индийский, Южно-Тихоокеанский и Южно-Атлантический;

3. области пониж. давления над океанами в высоких широтах умеренных поясов: в Сев. полушарии - Исландский (особенно зимой) и Алеутский минимумы, в Юж.- сплошное кольцо пониженного давления, окружающее Антарктиду (50 0 ю.ш.);

4. области повыш. давления над Арктикой (особенно зимой) и Антарктидой – антициклоны;

сезонные – прослеживаются как области высокого или низкого давления на протяжении одного сезона, сменяясь в другой сезон на центр действий атмосферы противоположного знака. Их существование связано с резким изменением в течение года темп-ры поверхности суши по отношению к темп-ре поверхности океанов; летний перегрев суши создаёт благоприятные условия для формирования здесь областей пониж. давления, зимнее переохлаждение - для областей повыш. давления. В Сев. полушарии к зимним областям повыш. давления относятся Азиатский (Сибирский) с центром в Монголии и Канадский максимумы, в Юж.- Австралийский, Южно-Американский и Южно-Африканский максимумы. Летние области пониж. давления: в Сев. полушарии - Южно-Азиатский (или Переднеазиатский) и Северо-Американский минимумы, в Юж. - Австралийский, Южно-Американский и Южно-Африканский минимумы).

Центрам действия атмосферы присущ определенный тип погоды. Поэтому воздух здесь сравнительно быстро приобретает свойства подстилающей поверхности – жаркий и влажный в Экваториальной депрессии, холодный и сухой в Монгольском антициклоне, прохладный и влажный в Исландском минимуме и т.д.


Планетарный теплообмен и его причины

Основные черты планетарного теплообмена . Солнечная энергия, поглощаемая поверхностью земного шара, расходуется затем на испарение и перенос тепла турбулентными потоками. На испарение уходит в среднем по всей планете около 80%, а на турбулентный теплообмен - остальные 20% от общего тепла.

Процессы теплообмена и изменения с географической широтой его составляющих в океане и на суше отличаются большим своеобразием. Все тепло, поглощаемое сушей весной и летом, полностью теряется осенью и зимой; при сбалансированном годовом бюджете тепла он, следовательно, повсеместно оказывается равным нулю.

В Мировом океане благодаря большой теплоемкости воды и ее подвижности в низких широтах происходит накопление тепла, откуда оно переносится течениями в высокие широты, где расходование его превышает поступление. Таким образом покрывается дефицит, создающийся в теплообмене воды с воздухом.

В экваториальной зоне Мирового океана при большой величине поглощаемой солнечной радиации и пониженном расходовании энергии годовой бюджет тепла имеет максимальные положительные значения. С удалением от экватора положительный годовой бюджет тепла уменьшается из-за увеличения расходных составляющих теплообмена, главным образом испарения. С переходом от тропиков к умеренным широтам бюджет тепла становится отрицательным.

В пределах суши все тепло, получаемое в весенне-летнее время, расходуется в осенне-зимний период. В водах же Мирового океана за долгую историю Земли накопилось огромное количество тепла равное 7,6 * 10^21 ккал. Аккумуляция столь большой массы объясняется высокой теплоемкостью воды и ее интенсивным перемешиванием, в процессе которого происходит довольно сложное перераспределение тепла в толще океаносферы. Теплоемкость всей атмосферы в 4 раза меньше, чем у десятиметрового слоя вод Мирового океана.

Несмотря на то что удельный вес солнечной энергии, идущей на турбулентный теплообмен между поверхностью Земли и воздухом, сравнительно невелик, он является основным источником нагревания приповерхностной части атмосферы. Интенсивность этого теплообмена зависит от разности температур между воздухом и подстилающей поверхностью (водой или сушей). В низких широтах планеты (от экватора примерно до сороковых широт обоих полушарий) воздух нагревается главным образом от суши, неспособной аккумулировать солнечную энергию и отдающей все получаемое тепло атмосфере. За счет турбулентного теплообмена воздушная оболочка получает от 20 до 40 ккал/см^2 в год, а в областях с малым увлажнением (Сахара, Аравия и др.) - даже более 60 ккал/см^2. Воды же в этих широтах накапливают тепло, отдавая воздуху в процессе турбулентного теплообмена лишь 5-10 ккал/см^2 в год и менее. Только в отдельных районах (ограниченной площади) вода в среднем за год оказывается холоднее и потому получает тепло от воздуха (в экваториальной зоне, на северо-западе Индийского океана, а также у западного побережья Африки и Южной Америки).


Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ:

1) Большой (геологический или абиотический);

2) Малый (биотический, биогенный или биологический).

Круговороты веществ и потоки космической энергии создают устойчивость биосферы. Круговорот твердого вещества и воды, происходящий в результате действия абиотических факторов (неживой природы), называют большим геологическим круговоротом. При большом геологическом круговороте (протекает миллионы лет) горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан; протекают геотектонические изменения, опускание материков, поднятие морского дна. Время круговорота воды в ледниках 8 000 лет, в реках - 11 дней. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Большой, геологический круговорот в биосфере характеризуется двумя важными моментами:

а) осуществляется на протяжении всего геологического развития Земли;

б) представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества - оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглись территории умеренных широт Северного полушария.

Малый, биогенный или биологический круговорот веществ происходит в твердой, жидкой и газообразных фазах при участии живых организмов. Биологический круговорот в противоположность геологическому требует меньших затрат энергии. Малый круговорот является частью большого, происходит на уровне биогеоценозов (внутри экосистем) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела. Продукты распада органического вещества разлагаются до минеральных компонентов. Малый круговорот незамкнут , что связано с поступлением веществ и энергии в экосистему извне и с выходом части их в биосферный круговорот.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды - главнейшие загрязнители атмосферы ), а также фосфора (фосфаты -главный загрязнитель материковых вод) . Практически все загрязняющие вещества выступают как вредные, и их относят к группе ксенобиотиков.

В настоящее время большое значение имеют круговороты ксенобиотиков - токсичных элементов - ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина) . Кроме того, из большого круговорота в малый поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые причиняют вред биоте и здоровью человека.

Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения живым веществом.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты .

Круговорот химических веществ из неорганической среды через растительность и животных обратно в неорганическую среду с использованием солнечной энергии химических реакций называется биогеохимическим циклом .

Настоящее и будущее нашей планеты зависит от участия живых организмов в функционировании биосферы. В круговороте веществ живое вещество, или биомасса, выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.

Биологический круговорот происходит при участии живых организмов и заключается в воспроизводстве органического вещества из неорганического и разложении этого органического до неорганического посредством пищевой трофической цепи. Интенсивность продукционных и деструкционных процессов в биологическом круговороте зависит от количества тепла и влаги. Например, низкая скорость разложения органического вещества полярных районов зависит от дефицита тепла.

Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. Интенсивность характеризуется индексом , равным отношению массы лесной подстилки к опаду. Чем больше индекс, тем меньше интенсивность круговорота.

Индекс в хвойных лесах - 10 - 17; широколиственных 3 - 4; саванне не более 0,2; влажных тропических лесах не более 0,1 , т.е. здесь биологический круговорот наиболее интенсивный.

Поток элементов (азота, фосфора, серы) через микроорганизмы на порядок выше, чем через растения и животных. Биологический круговорот не является полностью обратимым, он тесно связан с биогеохимическим круговоротом. Химические элементы циркулируют в биосфере по различным путям биологического круговорота:

поглощаются живым веществом и заряжаются энергией;

покидают живое вещество, выделяя энергию во внешнюю среду.

Эти циклы бывают двух типов: круговорот газообразных веществ; осадочный цикл (резерв в земной коре).

Сами круговороты состоят из двух частей:

- резервного фонда (это часть вещества, не связанная с живыми организмами);

- подвижного (обменного) фонда (меньшая часть вещества, связанная с прямым обменом между организмами и их непосредственным окружением).

Круговороты делят на:

Круговороты газового типа с резервным фондом в земной коре (круговороты углерода, кислорода, азота) - способны к быстрой саморегуляции;

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.) - более инертны, основная масса вещества находится в «недоступном» живым организмам виде.

Круговороты также можно разделить на:

- замкнутые (круговорот газообразных веществ, например, кислорода, углерода и азота - резерв в атмосфере и гидросфере океана, поэтому нехватка быстро компенсируется);

- незамкнутые (создающие резервный фонд в земной коре, например, фосфор - поэтому потери плохо компенсируются, т.е. создается дефицит).

Энергетической основой существования биологических круговоротов на Земле и их начальным звеном является процесс фотосинтеза. Каждый новый цикл круговорота не является точным повторением предыдущего. Например, в ходе эволюции биосферы часть процессов имела необратимый характер, в результате чего происходило образование и накопление биогенных осадков, увеличение количества кислорода в атмосфере, изменение количественных соотношений изотопов ряда элементов и т.д.

Циркуляцию веществ принято называть биогеохимическими циклами . Основные биогеохимические (биосферные) циклы веществ: цикл воды, цикл кислорода, цикл азота (участие бактерий-азотфиксаторов), цикл углерода (участие аэробных бактерий; ежегодно около 130 т углерода сбрасывается в геологический цикл), цикл фосфора (участие почвенных бактерий; ежегодно в океаны вымывается 14 млн.т фосфора), цикл серы, цикл катионов металлов.


Top