Логарифмічні нерівності - Гіпермаркет знань. Все про логарифмічні нерівності

Серед усього різноманіття логарифмічних нерівностей окремо вивчають нерівності зі змінною основою. Вони вирішуються за спеціальною формулою, яку чомусь рідко розповідають у школі:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) - g (x)) · (k (x) - 1) ∨ 0

Замість галки «∨» можна поставити будь-який знак нерівності: більше чи менше. Головне, щоб у обох нерівностях знаки були однаковими.

Так ми позбавляємося логарифмів і зводимо завдання до раціональної нерівності. Останнє вирішується набагато простіше, але при відкиданні логарифмів може виникнути зайве коріння. Щоб їх відсікти, достатньо знайти область допустимих значень. Якщо ви забули ОДЗ логарифму, настійно рекомендую повторити – див. «Що таке логарифм».

Все, що пов'язане з областю допустимих значень, треба виписати та вирішити окремо:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Ці чотири нерівності становлять систему і мають виконуватися одночасно. Коли область допустимих значень знайдено, залишається перетнути її з розв'язанням раціональної нерівності - і відповідь готова.

Завдання. Розв'яжіть нерівність:

Для початку випишемо ОДЗ логарифму:

Перші дві нерівності виконуються автоматично, а останню доведеться розписати. Оскільки квадрат числа дорівнює нулю і тоді, коли саме число дорівнює нулю, маємо:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Виходить, що ОДЗ логарифму - усі числа, крім нуля: x ∈ (−∞ 0)∪(0; +∞). Тепер вирішуємо основну нерівність:

Виконуємо перехід від логарифмічної нерівності до раціональної. У вихідній нерівності стоїть знак «менше», отже, отримана нерівність теж має бути зі знаком «менше». Маємо:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) · x 2< 0;
(3 − x ) · (3 + x ) · x 2< 0.

Нулі цього виразу: x = 3; x = -3; x = 0. Причому x = 0 - корінь другої кратності, отже, при переході через нього знак функції не змінюється. Маємо:

Отримуємо x ∈ (−∞ −3)∪(3; +∞). Ця множина повністю міститься в ОДЗ логарифму, отже це і є відповідь.

Перетворення логарифмічних нерівностей

Часто вихідна нерівність відрізняється від наведеного вище. Це легко виправити за стандартними правилами роботи з логарифмами – див. «Основні властивості логарифмів». А саме:

  1. Будь-яке число представимо у вигляді логарифму із заданою основою;
  2. Суму та різницю логарифмів з однаковими підставами можна замінити одним логарифмом.

Окремо хочу нагадати про область допустимих значень. Оскільки у вихідній нерівності може бути кілька логарифмів, потрібно знайти ОДЗ кожного з них. Таким чином, загальна схемарозв'язання логарифмічних нерівностей наступна:

  1. Знайти ОДЗ кожного логарифму, що входить у нерівність;
  2. Звести нерівність до стандартної за формулами додавання та віднімання логарифмів;
  3. Вирішити отриману нерівність за схемою, наведеною вище.

Завдання. Розв'яжіть нерівність:

Знайдемо область визначення (ОДЗ) першого логарифму:

Вирішуємо методом інтервалів. Знаходимо нулі чисельника:

3x − 2 = 0;
x = 2/3.

Потім – нулі знаменника:

x − 1 = 0;
x = 1.

Відзначаємо нулі та знаки на координатній стрілі:

Отримуємо x ∈ (−∞ 2/3)∪(1; +∞). У другого логарифму ОДЗ буде так само. Не вірите – можете перевірити. Тепер перетворимо другий логарифм так, щоб у основі стояла двійка:

Як бачите, трійки в основі та перед логарифмом скоротилися. Отримали два логарифми з однаковою основою. Складаємо їх:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Набули стандартної логарифмічної нерівності. Позбавляємося логарифмів за формулою. Оскільки у вихідній нерівності стоїть знак «менше», отриманий раціональний вираз теж має бути меншим за нуль. Маємо:

(f (x) - g (x)) · (k (x) - 1)< 0;
((x − 1) 2 − 2 2)(2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 − 2x − 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

Отримали дві множини:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат відповідь: x ∈ (−1; 3).

Залишилося перетнути ці множини - отримаємо справжню відповідь:

Нас цікавить перетин множин, тому обираємо інтервали, зафарбовані на обох стрілах. Отримуємо x ∈ (−1; 2/3)∪(1; 3) - усі точки виколоти.

Нерівність називається логарифмічною, якщо в ній міститься логарифмічна функція.

Методи вирішення логарифмічних нерівностей не відрізняються від , крім двох речей.

По-перше, при переході від логарифмічної нерівності до нерівності підлогарифмічних функцій слід стежити за знаком нерівності, що виходить. Він підпорядковується такому правилу.

Якщо основа логарифмічної функції більша за $1$, то при переході від логарифмічної нерівності до нерівності підлогарифмічних функцій знак нерівності зберігається, а якщо менше $1$, то змінюється на протилежний.

По-друге, розв'язання будь-якої нерівності – проміжок, а, отже, наприкінці розв'язання нерівності підлогарифмічних функцій необхідно скласти систему з двох нерівностей: першою нерівністю цієї системи буде нерівність підлогарифмічних функцій, а другим – проміжок області визначення логарифмічних функцій, що входять до логарифмічної нерівності.

практика.

Вирішимо нерівності:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \ x+3>0.$

$x \in (-3;+\infty)$

Основа логарифму дорівнює $2>1$, тому знак не змінюється. Користуючись визначенням логарифму, отримаємо:

$x+3 \geq 2^(3),$

$x \in )


Top