Logaritamske nejednakosti - Hipermarket znanja. Sve o logaritamskim nejednakostima

Među cijelom raznolikošću logaritamskih nejednakosti posebno se proučavaju nejednadžbe s promjenjivom bazom. Rješavaju se prema posebnoj formuli, koja se iz nekog razloga rijetko uči u školi:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) (k (x ) − 1) ∨ 0

Umjesto čavke "∨" možete staviti bilo koji znak nejednakosti: više ili manje. Glavna stvar je da su u obje nejednakosti predznaci isti.

Tako se rješavamo logaritama i problem svodimo na racionalnu nejednadžbu. Potonje je mnogo lakše riješiti, ali kada se odbace logaritmi, mogu se pojaviti dodatni korijeni. Da biste ih odrezali, dovoljno je pronaći raspon dopuštenih vrijednosti. Ako ste zaboravili ODZ logaritma, preporučujem da ga ponovite - pogledajte "Što je logaritam".

Sve što se odnosi na raspon prihvatljivih vrijednosti mora se posebno napisati i riješiti:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Ove četiri nejednakosti čine sustav i moraju se ispuniti istovremeno. Kada se pronađe raspon prihvatljivih vrijednosti, ostaje ga prijeći rješenjem racionalne nejednadžbe - i odgovor je spreman.

Zadatak. Riješite nejednadžbu:

Prvo, napišimo ODZ logaritma:

Prve dvije nejednakosti se izvode automatski, a posljednja će se morati napisati. Budući da je kvadrat broja nula ako i samo ako je sam broj nula, imamo:

x 2 + 1 ≠ 1;
x2 ≠ 0;
x ≠ 0.

Ispada da su ODZ logaritma svi brojevi osim nule: x ∈ (−∞ 0)∪(0; +∞). Sada rješavamo glavnu nejednakost:

Izvodimo prijelaz s logaritamske nejednadžbe na racionalnu. U izvornoj nejednakosti postoji predznak "manje od", pa bi i rezultirajuća nejednakost trebala biti sa predznakom "manje od". Imamo:

(10 − (x 2 + 1)) (x 2 + 1 − 1)< 0;
(9 − x2) x2< 0;
(3 − x) (3 + x) x 2< 0.

Nule ovog izraza: x = 3; x = -3; x = 0. Štoviše, x = 0 je korijen druge množine, što znači da se pri prolasku kroz njega predznak funkcije ne mijenja. Imamo:

Dobivamo x ∈ (−∞ −3)∪(3; +∞). Ovaj skup je u potpunosti sadržan u ODZ logaritma, što znači da je to odgovor.

Transformacija logaritamskih nejednadžbi

Često se izvorna nejednakost razlikuje od gornje. To je lako popraviti prema standardnim pravilima za rad s logaritmima - pogledajte "Osnovna svojstva logaritama". Naime:

  1. Bilo koji broj može se prikazati kao logaritam sa zadanom bazom;
  2. Zbroj i razlika logaritama s istom bazom mogu se zamijeniti jednim logaritmom.

Zasebno vas želim podsjetiti na raspon prihvatljivih vrijednosti. Budući da u izvornoj nejednadžbi može biti više logaritama, potrebno je pronaći DPV svakog od njih. Tako, opća shema rješenje logaritamske nejednadžbe je sljedeće:

  1. Nađite ODZ svakog logaritma uključenog u nejednadžbu;
  2. Nejednadžbu svesti na standardnu ​​pomoću formula za zbrajanje i oduzimanje logaritama;
  3. Dobivenu nejednadžbu riješite prema gornjoj shemi.

Zadatak. Riješite nejednadžbu:

Pronađite domenu definicije (ODZ) prvog logaritma:

Rješavamo metodom intervala. Pronalaženje nula brojnika:

3x − 2 = 0;
x = 2/3.

Zatim - nule nazivnika:

x − 1 = 0;
x = 1.

Na koordinatnoj strelici označavamo nule i znakove:

Dobivamo x ∈ (−∞ 2/3)∪(1; +∞). Drugi logaritam ODZ bit će isti. Ako mi ne vjerujete, možete provjeriti. Sada transformiramo drugi logaritam tako da je baza dva:

Kao što vidite, trojke na bazi i ispred logaritma su se smanjile. Dobijte dva logaritma s istom bazom. Spojimo ih zajedno:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Dobili smo standardnu ​​logaritamsku nejednakost. Logaritama se rješavamo formulom. Budući da postoji znak manje u izvornoj nejednakosti, rezultirajući racionalni izraz također mora biti manji od nule. Imamo:

(f (x) - g (x)) (k (x) - 1)< 0;
((x − 1) 2 − 2 2)(2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 - 2x - 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

Imamo dva kompleta:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Kandidat za odgovor: x ∈ (−1; 3).

Ostaje još prijeći ove skupove - dobivamo pravi odgovor:

Zanima nas presjek skupova, pa biramo intervale osjenčane na obje strelice. Dobivamo x ∈ (−1; 2/3)∪(1; 3) - sve točke su punktirane.

Nejednadžba se naziva logaritamskom ako sadrži logaritamsku funkciju.

Metode za rješavanje logaritamskih nejednakosti ne razlikuju se osim u dvije stvari.

Prvo, pri prijelazu s logaritamske nejednakosti na nejednakost sublogaritamskih funkcija slijedi slijedi znak dobivene nejednakosti. Poštuje sljedeće pravilo.

Ako je baza logaritamske funkcije veća od $1$, tada se pri prijelazu s logaritamske nejednakosti na nejednakost podlogaritamskih funkcija znak nejednakosti čuva, a ako je manja od $1$, onda se obrće.

Drugo, rješenje svake nejednadžbe je interval, pa je stoga na kraju rješenja nejednadžbe sublogaritamskih funkcija potrebno sastaviti sustav dviju nejednadžbi: prva nejednadžba tog sustava bit će nejednadžba sublogaritamske funkcije, a drugi će biti interval domene definicije logaritamskih funkcija uključenih u logaritamsku nejednadžbu.

Praksa.

Riješimo nejednakosti:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

Baza logaritma je $2>1$, pa se predznak ne mijenja. Koristeći definiciju logaritma, dobivamo:

$x+3 \geq 2^(3),$

$x \in )


Vrh