Натуральний логарифм 0 дорівнює. Логарифм

Що таке логарифм?

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Що таке логарифм? Як вирішувати логарифми? Ці питання багатьох випускників вводять у ступор. Традиційно тема логарифмів вважається складною, незрозумілою та страшною. Особливо – рівняння з логарифмами.

Це зовсім не так. Абсолютно! Не вірите? Добре. Зараз, за ​​якісь 10 – 20 хвилин ви:

1. Зрозумієте, що таке логарифм.

2. Навчіться розв'язувати цілий клас показових рівнянь. Навіть якщо про них нічого не чули.

3. Навчіться обчислювати прості логарифми.

Причому для цього вам потрібно буде знати лише таблицю множення, та як зводиться число до ступеня...

Відчуваю, сумніваєтеся ви... Ну гаразд, засікайте час! Поїхали!

Для початку вирішіть в умі ось таке рівняння:

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Логарифмом числа b на підставі а називається показник ступеня, який потрібно звести число а щоб отримати число b.

Якщо то .

Логарифм - вкрай важлива математична величина, оскільки логарифмічне обчислення дозволяє не лише вирішувати показові рівняння, а й оперувати з показниками, диференціювати показові та логарифмічні функції, інтегрувати їх і призводити до більш прийнятного виду, що підлягає розрахунку.

Вконтакте

Усі властивості логарифмів пов'язані безпосередньо з властивостями показових функцій. Наприклад, той факт, що означає, що:

Слід зауважити, що при вирішенні конкретних завдань властивості логарифмів можуть виявитися більш важливими і корисними, ніж правила роботи зі ступенями.

Наведемо деякі тотожності:

Наведемо основні вирази алгебри:

;

.

Увага!може існувати тільки за x>0, x≠1, y>0.

Намагатимемося розібратися з питанням, що таке натуральні логарифми. Окремий інтерес у математиці представляють два види— перший має в основі число «10», і має назву « десятковий логарифм». Другий називається натуральним. Основа натурального логарифму - число "е". Саме про нього ми і детально говоритимемо в цій статті.

Позначення:

  • lg x - десятковий;
  • ln x - натуральний.

Використовуючи тотожність, можна побачити, що ln e = 1, як і те, що lg 10=1.

Графік натурального логарифму

Побудуємо графік натурального логарифму стандартним класичним способом за точками. За бажання, перевірити, чи правильно ми будуємо функцію, можна за допомогою дослідження функції. Однак, є сенс навчитися будувати його «вручну», щоб знати, як правильно порахувати логарифм.

Функція: y = ln x. Запишемо таблицю точок, якими пройде графік:

Пояснимо, чому ми вибрали саме такі значення аргументу х. Вся річ у тотожності: . Для натурального логарифму ця тотожність виглядатиме таким чином:

Для зручності ми можемо взяти п'ять опорних точок:

;

;

.

;

.

Таким чином, підрахунок натуральних логарифмів - досить нескладне заняття, більше того, він спрощує підрахунки операцій зі ступенями, перетворюючи їх на звичайне множення.

Побудувавши за точками графік, отримуємо приблизний графік:

Область визначення натурального логарифму (тобто всі допустимі значення аргументу Х) — усі числа більші за нуль.

Увага!До області визначення натурального логарифму входять тільки позитивні числа! До області визначення не входить х=0. Це неможливо виходячи з умов існування логарифму.

Область значень (тобто усі допустимі значення функції y = ln x) — усі числа в інтервалі .

Межа натурального log

Вивчаючи графік, виникає питання - як поводиться функція при y<0.

Очевидно, що графік функції прагне перетнути вісь, але не зможе цього зробити, оскільки натуральний логарифм при х<0 не существует.

Межа натуральної logможна записати таким чином:

Формула заміни основи логарифму

Мати справу з натуральним логарифмом набагато простіше, ніж з логарифмом, що має довільну основу. Саме тому спробуємо навчитися приводити будь-який логарифм до натурального, або висловлювати його по довільній основі через натуральні логарифми.

Почнемо з логарифмічної тотожності:

Тоді будь-яке число, або змінну можна представити у вигляді:

де х - будь-яке число (позитивне згідно з властивостями логарифму).

Даний вираз можна прологарифмувати з обох боків. Зробимо це за допомогою довільної основи z:

Скористаємося властивістю (тільки замість «с» у нас вираз):

Звідси отримуємо універсальну формулу:

.

Зокрема, якщо z=e, тоді:

.

Нам вдалося уявити логарифм з довільної основи через відношення двох натуральних логарифмів.

Вирішуємо завдання

Щоб краще орієнтуватися в натуральних логарифмах, розглянемо приклади кількох завдань.

Завдання 1. Необхідно розв'язати рівняння ln x = 3.

Рішення:Використовуючи визначення логарифму: якщо , то отримуємо:

Завдання 2. Розв'яжіть рівняння (5 + 3 * ln (x - 3)) = 3.

Рішення: Використовуючи визначення логарифму: якщо , то отримуємо:

.

Ще раз застосуємо визначення логарифму:

.

Таким чином:

.

Можна приблизно обчислити відповідь, а можна залишити її і в такому вигляді.

Завдання 3.Розв'яжіть рівняння.

Рішення:Зробимо підстановку: t = ln x. Тоді рівняння набуде наступного вигляду:

.

Перед нами квадратне рівняння. Знайдемо його дискримінант:

Перший корінь рівняння:

.

Другий корінь рівняння:

.

Згадуючи про те, що ми робили підстановку t = ln x, отримуємо:

У статистиці та теорії ймовірності логарифмічні величини зустрічаються дуже часто. Це не дивно, адже число е — найчастіше відображає темпи зростання експоненційних величин.

В інформатиці, програмуванні та теорії обчислювальних машин, логарифми зустрічаються досить часто, наприклад, щоб зберегти в пам'яті N знадобиться бітів.

У теоріях фракталів та розмірності логарифми використовуються постійно, оскільки розмірності фракталів визначаються тільки за їх допомогою.

У механіці та фізицінемає такого розділу, де не використовувалися логарифми. Барометричний розподіл, усі принципи статистичної термодинаміки, рівняння Ціолковського та інше — процеси, які математично можна описати лише за допомогою логарифмування.

У хімії логарифмування використовують у рівняннях Нернста, описи окислювально-відновних процесів.

Вражаюче, але навіть у музиці, з метою дізнатися кількість частин октави, використовують логарифми.

Натуральний логарифм Функція y=ln x її властивості

Доказ основної властивості натурального логарифму

нерідко беруть цифру е = 2,718281828 . Логарифми з цієї підстави називають натуральним. Під час проведення обчислень із натуральними логарифмами загальноприйнято оперувати знаком ln, а не log; при цьому число 2,718281828 , Які визначають основу, не вказують.

Тобто формулювання матиме вигляд: натуральний логарифмчисла х- це показник ступеня, в який потрібно звести число e, Щоб отримати x.

Так, ln(7,389...)= 2, оскільки e 2 =7,389... . Натуральний логарифм самого числа e= 1, тому що e 1 =e, а натуральний логарифм одиниці дорівнює нулю, оскільки e 0 = 1.

Саме число евизначає межу монотонної обмеженої послідовності

обчислено, що е = 2,7182818284... .

Дуже часто для фіксації в пам'яті якогось числа, цифри необхідного числа асоціюють з якоюсь видатною датою. Швидкість запам'ятовування перших дев'яти знаків числа епісля коми зросте, якщо помітити, що 1828 - це рік народження Льва Толстого!

На сьогоднішній день є досить повні таблиці натуральних логарифмів.

Графік натурального логарифму(функції y =ln x) є наслідком графіка експоненти дзеркальним відображенням щодо прямої у = хі має вигляд:

Натуральний логарифм може бути знайдений для кожного позитивного речового числа aяк площа під кривою y = 1/xвід 1 до a.

Елементарність цього формулювання, яке стиковується з багатьма іншими формулами, в яких задіяний натуральний логарифм, стало причиною утворення назви «натуральний».

Якщо аналізувати натуральний логарифм, як речову функцію дійсної змінної, вона виступає зворотною функцієюдо експоненційної функції, що зводиться до тотожностей:

e ln(a) =a (a>0)

ln(e a) =a

За аналогією з усіма логарифмами, натуральний логарифм перетворює множення на додавання, поділ на віднімання:

ln(xy) = ln(x) + ln(y)

ln(Х/в) = lnx - lny

Логарифм може бути знайдений для кожної позитивної основи, яка не дорівнює одиниці, а не тільки для e, але логарифми інших підстав відрізняються від натурального логарифму лише постійним множником, і, зазвичай, визначаються термінах натурального логарифму.

Проаналізувавши графік натурального логарифму,отримуємо, що він існує при позитивних значеннях змінної x. Він монотонно зростає у своїй області визначення.

При x 0 межею натурального логарифму виступає мінус нескінченність ( -∞ ).При x → +∞ межею натурального логарифму виступає плюс нескінченність ( + ∞ ). При великих xлогарифм збільшується досить повільно. Будь-яка статечна функція x aз позитивним показником ступеня aзростає швидше за логарифму. Натуральний логарифм є монотонно зростаючою функцією, тому екстремуми у нього відсутні.

Використання натуральних логарифмівдуже раціонально під час проходження вищої математики. Так, використання логарифму зручно для знаходження відповіді рівнянь, у яких невідомі фігурують як показник ступеня. Застосування в розрахунках натуральних логарифмів дає можливість значно полегшити велику кількість математичних формул. Логарифми на підставі е присутні при вирішенні значної кількості фізичних завдань і природним чином входять до математичного опису окремих хімічних, біологічних та інших процесів. Так, логарифми використовуються розрахунку постійної розпаду відомого періоду напіврозпаду, чи обчислення часу розпаду у вирішенні проблем радіоактивності. Вони виступають у головній ролі у багатьох розділах математики та практичних наук, до них вдаються у сфері фінансів для вирішення великої кількості завдань, у тому числі й у розрахунку складних відсотків.

Урок та презентація на теми: "Натуральні логарифми. Заснування натурального логарифму. Логарифм натурального числа"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 11 класу
Інтерактивний посібник для 9–11 класів "Тригонометрія"
Інтерактивний посібник для 10–11 класів "Логарифми"

Що таке натуральний логарифм

Хлопці, на минулому уроці ми з вами довідалися про нове, особливе число – е. Сьогодні ми продовжимо працювати з цим числом.
Ми з вами вивчили логарифми і знаємо, що в основі логарифму може стояти безліч чисел, які більше 0. Сьогодні ми також розглянемо логарифм, в основі якого стоїть число е. Такий логарифм називається натуральним логарифмом. Він має власний запис: $\ln(n)$ - натуральний логарифм. Такий запис еквівалентний запису: $ \ log_e (n) = \ ln (n) $.
Показові та логарифмічні функції є зворотними, тоді натуральний логарифм є зворотною для функції: $y=e^x$.
Зворотні функції є симетричними щодо прямої $ y = x $.
Давайте збудуємо графік натурального логарифму, відобразивши експоненційну функцію щодо прямої $y=x$.

Варто помітити кут нахилу щодо графіку функції $y=e^x$ у точці (0;1) дорівнює 45°. Тоді кут нахилу дотичної до графіка натурального логарифму в точці (1;0) також дорівнюватиме 45°. Обидві ці дотичні будуть паралельні прямій $y=x$. Давайте схематично зобразимо дотичні:

Властивості функції $y=\ln(x)$

1. $D(f)=(0;+∞)$.
2. Не є ні парною, ні непарною.
3. Зростає по всій області визначення.
4. Не обмежена згори, не обмежена знизу.
5. Найбільше значення немає, найменшого значення немає.
6. Безперервна.
7. $E(f)=(-∞; +∞)$.
8. Випукла вгору.
9. Диференційована всюди.

У курсі вищої математики доведено, що похідна зворотної функції є величина, обернена до похідної цієї функції.
Заглиблюватися в доказ не має великого сенсу, просто запишемо формулу: $y"=(\ln(x))"=\frac(1)(x)$.

приклад.
Обчислити значення похідної функції: $y=\ln(2x-7)$ у точці $х=4$.
Рішення.
У загальному вигляді наша функція є функцією $y=f(kx+m)$, похідні таких функцій ми вміємо обчислювати.
$y"=(\ln((2x-7)))"=\frac(2)((2x-7))$.
Обчислимо значення похідної у потрібній точці: $y"(4)=\frac(2)((2*4-7))=2$.
Відповідь: 2.

приклад.
Провести дотичну до графіку функції $y=ln(x)$ у точці $х=е$.
Рішення.
Рівняння щодо графіку функції, у точці $х=а$, добре пам'ятаємо.
$y=f(a)+f"(a)(x-a)$.
Послідовно обчислимо необхідні значення.
$a=e$.
$f(a)=f(e)=\ln(e)=1$.
$f"(a)=\frac(1)(a)=\frac(1)(e)$.
$ y = 1 + frac (1) (e) (x-e) = 1 + frac (x) (e) - frac (e) (e) = frac (x) (e) $.
Рівняння дотичної у точці $х=е$ є функцією $y=\frac(x)(e)$.
Давайте побудуємо графік натурального логарифму та дотичної.

приклад.
Дослідити функцію на монотонність та екстремуми: $y=x^6-6*ln(x)$.
Рішення.
Область визначення функції $D(y)=(0;+∞)$.
Знайдемо похідну заданої функції:
$y"=6*x^5-\frac(6)(x)$.
Похідна існує при всіх х з області визначення, тоді критичних точок немає. Знайдемо стаціонарні точки:
$6*x^5-\frac(6)(x)=0$.
$ \ frac (6 * x ^ 6-6) (x) = 0 $.
$ 6 * x ^ 6-6 = 0 $.
$ x ^ 6-1 = 0 $.
$x^6=1$.
$ x = ± 1 $.
Точка $х=-1$ не належить області визначення. Тоді маємо одну стаціонарну точку $х=1$. Знайдемо проміжки зростання та спадання:

Точка $х=1$ – точка мінімуму, тоді $y_min=1-6*\ln(1)=1$.
Відповідь: Функція зменшується на відрізку (0;1], функція зростає на промені $)


Top