Що називається синусом гострого кута прямокутного трикутника. Прямокутний трикутник

Інструкція

Якщо потрібно знайти косинус кутау довільному трикутнику, необхідно скористатися теоремою косінусів:
якщо кут гострий: cos? = (a2 + b2 - c2) / (2ab);
якщо кут: cos? = (с2 - a2 - b2) / (2ab), де а, b - Довжини сторін прилеглих до кута, С - Довжина сторони протилежної куту.

Корисна порада

Математичне позначення косинуса – cos.
Значення косинуса може бути більше 1 і менше -1.

Джерела:

  • як обчислити косинус кута
  • Тригонометричні функції на одиничному колі

Косінус- це базова тригонометрична функція кута. Вміння визначати косинус стане в нагоді у векторній алгебрі при визначенні проекцій векторів на різні осі.

Інструкція

соs?=(b?+c?-а?)/(2*b*c)

Є трикутник із сторонами а, b, с, рівними 3, 4, 5 мм, відповідно.

Знайти косинускута, укладеного між великими сторонами.

Позначимо протилежний стороні а кут через?, тоді, згідно з виведеною вище формулою, маємо:

соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40 = 32/40 = 0,8

Відповідь: 0,8.

Якщо трикутник прямокутний, то знаходження косинуса кута достатньо знати довжини всього двох будь-яких сторін ( косинуспрямого кута дорівнює 0).

Нехай є прямокутний трикутник зі сторонами а, b, с, де - гіпотенуза.

Розглянемо всі варіанти:

Знайти соs?, якщо відомі довжини сторін а та b (трикутника)

Скористаємося додатково теоремою Піфагора:

соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?)) =(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)

Щоб правильність отриманої формули, підставимо до неї з прикладу 1, тобто.

Зробивши елементарні обчислення, отримуємо:

Аналогічно перебуває косинусу прямокутному трикутникув інших випадках:

Відомі а і с (гіпотенуза та протилежний катет), знайти соs?

соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?)) =(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.

Підставляючи значення а=3 та с=5 з прикладу, отримуємо:

Відомі b і с (гіпотенуза та прилеглий катет).

Знайти соs?

Провівши аналогічні (показані в прикладах 2 і 3 перетворення), отримаємо, що в цьому випадку косинусв трикутникуобчислюється за дуже простою формулою:

Простота виведеної формули пояснюється просто: фактично, що належить до кута? катет є проекцією гіпотенузи, його довжина дорівнює довжині гіпотенузи, помноженої на со?.

Підставляючи значення b=4 та с=5 з першого прикладу, отримаємо:

Отже, всі наші формули є вірними.

Порада 5: Як знайти гострий кут у прямокутному трикутнику

Прямо вугільнийтрикутник, ймовірно, - одна з найвідоміших, з історичної точки зору, геометричних фігур. Піфагоровим "штанам" конкуренцію може скласти лише "Евріка!" Архімед.

Вам знадобиться

  • - креслення трикутника;
  • - Лінійка;
  • - Транспортир.

Інструкція

Сума кутів трикутника складає 180 градусів. У прямокутному трикутникуодин кут (прямий) завжди буде 90 градусів, інші гострими, тобто. менше 90 градусів кожен. Щоб визначити, який кут у прямокутному трикутникує прямим, виміряйте за допомогою лінійки сторони трикутника та визначте найбільшу. Вона гіпотенуза (AB) і знаходиться навпроти прямого кута (C). Інші дві сторони утворюють прямий кут та катетами (AC, BC).

Коли визначили, який кут є гострим, ви можете або розмір кута за допомогою транспортира, або розрахувати за допомогою математичних формул.

Щоб визначити величину кута за допомогою транспортира, поєднайте його вершину (позначимо її літерою А) зі спеціальною позначкою на лінійці в центрі транспортира, катет АС повинен збігатися з верхнім краєм. Позначте на півкруглій частині транспортира точку, якою гіпотенуза AB. Значення у цій точці відповідає величині кута в градусах. Якщо на транспортирі вказано 2 величини, то для гострого кутапотрібно вибирати меншу, для тупого – більшу.

Отримане значення знайдіть у довідкових Брадісах та визначте якому куту відповідає отримане числове значення. Цим методом користувалися наші бабусі.

У нашому достатньо взяти з функцією обчислення тригонометричних формул. Наприклад, вбудований калькулятор Windows. Запустіть програму "Калькулятор", у пункті меню "Вид" виберіть пункт "Інженерний". Обчисліть синус кута, що шукається, наприклад, sin (A) = BC/AB = 2/4 = 0.5

Переключіть калькулятор у режим зворотних функцій, натиснувши кнопку INV на табло калькулятора, потім натисніть на кнопку функції арксинуса (на табло позначено, як sin у мінус першого ступеня). У вікні розрахунку з'явиться такий напис: asind (0.5) = 30. Тобто. значення шуканого кута – 30 градусів.

Джерела:

  • Таблиці Брадіса (синуси, косинуси)

Теорема косінусів у математиці найчастіше використовується у тому випадку, коли необхідно знайти третю сторону по кутку та двом сторонам. Однак іноді умова завдання поставлена ​​навпаки: потрібно знайти кут при заданих трьох сторонах.

Інструкція

Уявіть, що дано трикутник, у якого відомі довжини двох сторін і значення одного кута. Усі кути цього трикутника не рівні один одному, яке сторони також є різними за величиною. Кут γ лежить навпроти сторони трикутника, позначеної як AB, яка є цією фігурою. Через даний кут, а також через сторони AC і BC, що залишилися, можна знайти ту сторону трикутника, яка невідома, за теоремою косінусів, вивівши на її основі подану нижче формулу:
a^2=b^2+c^2-2bc*cosγ, де a=BC, b=AB, c=AC
Теорему косінусів інакше називають узагальненою теоремою Піфагора.

Тепер уявіть собі, що дано всі три сторони фігури, але при цьому її кут невідомий. Знаючи, що вигляд a^2=b^2+c^2-2bc*cosγ, перетворіть цей вираз таким чином, щоб шуканою величиною став кут γ: b^2+c^2=2bc*cosγ+a^2.
Потім наведіть показане вище рівняння до іншого вигляду: b^2+c^2-a^2=2bc*cosγ.
Потім цей вираз слід перетворити на подане нижче: cosγ=√b^2+c^2-a^2/2bc.
Залишилося підставити у формулу числа та здійснити обчислення.

Щоб знайти косинус, позначеного як γ, його необхідно виразити через зворотну тригонометричну, звану арккосинусом. Арккосинусом числа m значення кута, для якого косинус кута дорівнює m. Функція y=arccos m є спадною. Уявіть собі, наприклад, що косинус кута γ дорівнює одній другій. Тоді кут може бути визначений через арккосинус наступним чином:
γ = arccos, m = arccos 1/2 = 60 °, де m = 1/2.
Аналогічним чином можна знайти інші кути трикутника при двох інших невідомих його сторонах.

Синус та косинус – дві тригонометричні функції, які називають «прямими». Саме їх доводиться обчислювати частіше за інших і для вирішення цього завдання сьогодні кожен з нас має чималий вибір варіантів. Нижче наведено кілька найбільш простих способів.

Інструкція

Використовуйте транспортир, олівець та аркуш паперу, якщо інших засобів обчислення немає під рукою. Одне з визначень косинуса дається через гострі кути прямокутному трикутнику - його дорівнює співвідношенню між довжиною катета, що лежить навпроти цього кута і довжиною . Намалюйте трикутник, у якому один із кутів буде прямим (90°), а інший куту, якого потрібно обчислити. Довжина сторін при цьому не має значення - намалюйте їх такими, які зручніше виміряти. Виміряйте довжину потрібного катета та гіпотенузи і розділіть перше на друге будь-яким зручним способом.

Скористайтеся можливістю значення тригонометричних функційза допомогою калькулятора вбудованого в пошукову систему Nigma, якщо у вас є доступ в інтернет. Наприклад, якщо потрібно обчислити косинус кута 20°, то завантаживши головну сторінкусервісу http://nigma.ru наберіть у полі пошукового запиту «косинус 20» та натисніть кнопку «Знайти!». Можна "градусів" опустити, а слово "косинус" замінити на cos - у будь-якому випадку пошуковик покаже результат з точністю до 15 знаків після коми (0,939692620785908).

Відкрийте стандартну програму- , що встановлюється разом з операційною системою Windows, якщо немає доступу до Інтернету. Зробити це можна, наприклад одночасно натиснувши клавіші win і r, потім ввівши команду calc і клацнувши по кнопці OK. Для обчислення тригонометричних функцій тут інтерфейс, з назвою «інженерний» чи «науковий» (залежно від версії ОС) – виберіть потрібний пункт у розділі «Вигляд» меню калькулятора. Після цього введіть величину кута і клацніть по кнопці cos в інтерфейсі програми.

Відео на тему

Порада 8: Як визначити кути у прямокутному трикутнику

Прямокутний характеризується певними співвідношеннями між кутами та сторонами. Знаючи значення одних із них, можна обчислювати інші. І тому використовуються формули, засновані, своєю чергою, на аксіомах і теоремах геометрії.

Довідкові дані щодо тангенсу (tg x) та котангенсу (ctg x). Геометричне визначення, характеристики, графіки, формули. Таблиця тангенсів та котангенсів, похідні, інтеграли, розкладання до лав. Вирази через комплексні змінні. Зв'язок із гіперболічними функціями.

Геометричне визначення




|BD| - Довжина дуги кола з центром у точці A .
α - кут, виражений у радіанах.

Тангенс ( tg α) - це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, рівна відношенню довжини протилежного катета |BC| до довжини прилеглого катета | AB | .

Котангенс ( ctg α) - це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, що дорівнює відношенню довжини прилеглого катета |AB| до довжини протилежного катета | BC | .

Тангенс

Де n- ціле.

У західній літературі тангенс позначається так:
.
;
;
.

Графік функції тангенсу, y = tg x


Котангенс

Де n- ціле.

У західній літературі котангенс позначається так:
.
Також прийнято такі позначення:
;
;
.

Графік функції котангенсу, y = ctg x


Властивості тангенсу та котангенсу

Періодичність

Функції y = tg xта y = ctg xперіодичні з періодом π.

Парність

Функції тангенс та котангенс - непарні.

Області визначення та значень, зростання, спадання

Функції тангенс і котангенс безперервні у своїй області визначення (див. доказ безперервності). Основні властивості тангенсу та котангенсу представлені в таблиці ( n- ціле).

y = tg x y = ctg x
Область визначення та безперервність
Область значень -∞ < y < +∞ -∞ < y < +∞
Зростання -
Зменшення -
Екстремуми - -
Нулі, y = 0
Точки перетину з віссю ординат, x = 0 y = 0 -

Формули

Вирази через синус та косинус

; ;
; ;
;

Формули тангенсу та котангенс від суми та різниці



Інші формули легко отримати, наприклад

Твір тангенсів

Формула суми та різниці тангенсів

У цій таблиці представлені значення тангенсів та котангенсів при деяких значеннях аргументу.

Вирази через комплексні числа

Вирази через гіперболічні функції

;
;

Похідні

; .


.
Похідна n-го порядку змінної x від функції :
.
Виведення формул для тангенсу >>>; для котангенсу > > >

Інтеграли

Розкладання до лав

Щоб отримати розкладання тангенса за ступенями x, потрібно взяти кілька членів розкладання в степеневий ряд для функцій sin xі cos xі розділити ці багаточлени один на одного. При цьому виходять такі формули.

При .

при .
де B n- Числа Бернуллі. Вони визначаються або з рекурентного співвідношення:
;
;
де.
Або за формулою Лапласа:


Зворотні функції

Зворотними функціямидо тангенсу і котангенсу є арктангенс і арккотангенс відповідно.

Арктангенс, arctg


, де n- ціле.

Арккотангенс, arcctg


, де n- ціле.

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.
Г. Корн, Довідник з математики для науковців та інженерів, 2012.

Синус є однією з основних тригонометричних функцій, застосування якої не обмежене лише геометрією. Таблиці обчислення тригонометричних функцій, як і інженерні калькулятори, не завжди під рукою, а обчислення синуса часом необхідне рішення різних завдань. Взагалі, обчислення синуса допоможе закріпити креслярські навички та знання тригонометричних тотожностей.

Ігри з лінійкою та олівцем

Просте завдання: як знайти синус кута, намальованого на папері? Для вирішення знадобиться звичайна лінійка, трикутник (або циркуль) та олівець. Найпростішим способом обчислити синус кута можна розділивши дальній катет трикутника з прямим кутом на довгу сторону - гіпотенузу. Таким чином, спочатку потрібно доповнити гострий кут до фігури прямокутного трикутника, прокресливши перпендикулярну до одного з променів лінію на довільній відстані від вершини кута. Потрібно дотримати кут саме 90 °, для чого нам і знадобиться канцелярський трикутник.

Використання циркуля трохи точніше, але займе більше часу. На одному з променів потрібно відзначити 2 точки на деякій відстані, налаштувати на циркулі радіус, приблизно рівний відстані між точками, і прокреслити півкола з центрами в цих точках до отримання перетинів цих ліній. Поєднавши точки перетину наших кіл між собою, ми отримаємо строгий перпендикуляр до променя нашого кута, залишається лише продовжити лінію до перетину з іншим променем.

В отриманому трикутнику потрібно лінійкою виміряти бік навпроти кута і довгу бік одному з променів. Відношення першого виміру до другого і буде шуканою величиною синуса гострого кута.

Знайти синус для кута більше 90°

Для тупого кута завдання не набагато складніше. Потрібно прокреслити промінь з вершини в протилежний бік за допомогою лінійки для утворення прямої з одним з променів кута, що цікавить нас. З отриманим гострим кутом слід надходити, як описано вище, синуси суміжних кутів, що утворюють разом розгорнутий кут 180°, рівні.

Обчислення синуса за іншими тригонометричними функціями

Також обчислення синуса можливе, якщо відомі значення інших тригонометричних функцій кута або хоча б довжини сторін трикутника. У цьому нам допоможуть тригонометричні тотожності. Розберемо найпоширеніші приклади.

Як знаходити синус при відомому косинус кута? Перше тригонометричне тотожність, що виходить з теореми Піфагора, свідчить, що сума квадратів синуса і косинуса одного і того ж кута дорівнює одиниці.

Як знаходити синус за відомого тангенсу кута? Тангенс отримують розподілом далекого катета на ближній або поділом синуса на косинус. Таким чином, синусом буде твір косинуса на тангенс, а квадрат синусу буде квадрат цього твору. Замінюємо косинус у квадраті на різницю між одиницею та квадратним синусом згідно з першою тригонометричною тотожністю і шляхом нехитрих маніпуляцій наводимо рівняння до обчислення квадратного синуса через тангенс, відповідно, для обчислення синуса доведеться витягти корінь з отриманого результату.

Як знаходити синус за відомого котангенсу кута? Значення котангенсу можна обчислити, розділивши довжину ближнього від кута катета на довжину далекого, а також поділивши косинус на синус, тобто котангенс - функція, зворотна тангенсу щодо числа 1. Для розрахунку синуса можна обчислити тангенс за формулою tg α = 1 / ct скористатися формулою у другому варіанті. Також можна вивести пряму формулу за аналогією з тангенсом, яка виглядатиме таким чином.

Як знаходити синус по трьох сторонах трикутника

Існує формула для знаходження довжини невідомої сторони будь-якого трикутника, не тільки прямокутного, з двох відомих сторін з використанням тригонометричної функції косинуса протилежного кута. Виглядає вона так.

Ну, а синус можна далі розрахувати за косинус згідно з формулами вище.

Поняття синуса, косинуса, тангенса і котангенса є основними категоріями тригонометрії - розділ математики, і нерозривно пов'язані з визначенням кута. Володіння цією математичною наукою вимагає запам'ятовування та розуміння формул та теорем, а також розвиненого просторового мислення. Саме тому у школярів та студентів тригонометричні обчислення нерідко викликають труднощі. Щоб подолати їх, слід докладніше познайомитись із тригонометричними функціями та формулами.

Поняття у тригонометрії

Щоб розібратися в базових поняттях тригонометрії, слід спочатку визначитися з тим, що таке прямокутний трикутник і кут в колі, і саме з ними пов'язані всі основні тригонометричні обчислення. Трикутник, у якому один із кутів має величину 90 градусів, є прямокутним. Історично ця фігура часто використовувалася людьми в архітектурі, навігації, мистецтві, астрономії. Відповідно, вивчаючи та аналізуючи властивості цієї фігури, люди прийшли до обчислення відповідних співвідношень її параметрів.

Основні категорії, пов'язані з прямокутними трикутниками - гіпотенуза та катети. Гіпотенуза – сторона трикутника, що лежить проти прямого кута. Катети, відповідно, це решта двох сторін. Сума кутів будь-яких трикутників завжди дорівнює 180 градусів.

Сферична тригонометрія - розділ тригонометрії, який не вивчається в школі, проте в прикладних науках на кшталт астрономії та геодезії, вчені користуються саме ним. Особливість трикутника у сферичній тригонометрії в тому, що він завжди має суму кутів понад 180 градусів.

Кути трикутника

У прямокутному трикутнику синусом кута є відношення катета, що протилежить шуканому куту, до гіпотенузи трикутника. Відповідно, косинус – це відношення прилеглого катета та гіпотенузи. Обидва ці значення мають величину менше одиниці, оскільки гіпотенуза завжди довше катета.

Тангенс кута - величина, що дорівнює відношенню протилежного катета до прилеглого катета шуканого кута, або синуса до косінус. Котангенс, своєю чергою, це ставлення прилеглого катета шуканого кута до протилежного кактету. Котангенс кута можна отримати, розділивши одиницю на значення тангенса.

Одиничне коло

Одиничне коло в геометрії - коло, радіус якого дорівнює одиниці. Таке коло будується в декартовій системі координат, при цьому центр кола збігається з точкою початку координат, а початкове положення вектора радіусу визначено за позитивним напрямом осі Х (осі абсцис). Кожна точка кола має дві координати: ХХ та YY, тобто координати абсцис та ординат. Вибравши на колі будь-яку точку в площині ХХ, і опустивши з неї перпендикуляр на вісь абсцис, отримуємо прямокутний трикутник, утворений радіусом до обраної точки (позначимо її буквою С), перпендикуляром, проведеним до осі Х (точка перетину позначається буквою G), а відрізком осі абсцис між початком координат (точка позначена літерою А) та точкою перетину G. Отриманий трикутник АСG — прямокутний трикутник, вписаний у коло, де AG — гіпотенуза, а АС та GC — катети. Кут між радіусом кола АС та відрізком осі абсцис з позначенням AG, визначимо як α (альфа). Так, cos = AG/AC. Враховуючи, що АС - це радіус одиничного кола, і він дорівнює одиниці, вийде, що cos α = AG. Аналогічно, sin = CG.

Крім того, знаючи ці дані, можна визначити координату точки С на колі, оскільки cos α=AG, а sin α=CG, отже, точка має задані координати(cos α; sin α). Знаючи, що тангенс дорівнює відношенню синуса до косинус, можна визначити, що tg α = y/х, а ctg α = х/y. Розглядаючи кути у негативній системі координат, можна розрахувати, що значення синуса та косинуса деяких кутів можуть бути негативними.

Обчислення та основні формули


Значення тригонометричних функцій

Розглянувши сутність тригонометричних функцій через одиничне коло, можна вивести значення цих функцій деяких кутів. Значення наведені в таблиці нижче.

Найпростіші тригонометричні тотожності

Рівняння, у яких під знаком тригонометричної функції є невідоме значення, називаються тригонометричними. Тотожності зі значенням sin х = α, k — будь-яке ціле число:

  1. sin x = 0, x = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin x = -1, x = -π/2 + 2πk.
  4. sin х = а, | > 1, немає рішень.
  5. sin х = а, | ≦ 1, х = (-1)^k * arcsin α + πk.

Тотожності зі значенням cos х = а, де k - будь-яке ціле число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, | > 1, немає рішень.
  5. cos х = а, | ≤ 1, х = ± arccos α + 2πk.

Тотожності зі значенням tg х = а, де k - будь-яке ціле число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тотожності зі значенням ctg х = а, де k - будь-яке ціле число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формули наведення

Ця категорія постійних формул означає методи, за допомогою яких можна перейти від тригонометричних функцій виду до функцій аргументу, тобто привести синус, косинус, тангенс і котангенс кута будь-якого значення до відповідних показників кута інтервалу від 0 до 90 градусів для більшої зручності обчислень.

Формули приведення функцій для синуса кута виглядають таким чином:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса кута:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

Використання вищевказаних формул можливе за дотримання двох правил. По-перше, якщо кут можна представити як значення (π/2±a) або (3π/2±a), значення функції змінюється:

  • з sin на cos;
  • з cos на sin;
  • з tg на ctg;
  • із ctg на tg.

Значення функції залишається незмінним, якщо кут може бути як (π ± a) або (2π ± a).

По-друге, знак наведеної функції не змінюється: якщо він спочатку був позитивним, таким залишається. Аналогічно із негативними функціями.

Формули додавання

Ці формули виражають величини синуса, косинуса, тангенсу та котангенсу суми та різниці двох кутів повороту через їх тригонометричні функції. Зазвичай кути позначаються як і β.

Формули мають такий вигляд:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α±β) = (tgα±tgβ)/(1∓tgα*tgβ).
  4. ctg(α±β) = (-1±ctgα*ctgβ)/(ctgα±ctgβ).

Ці формули справедливі будь-яких величин кутів α і β.

Формули подвійного та потрійного кута

Тригонометричні формули подвійного та потрійного кута — це формули, які пов'язують функції кутів 2α та 3α відповідно, з тригонометричними функціями кута α. Виводяться з формул додавання:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2α.
  3. tg2α = 2tgα/(1 - tg^2α).
  4. sin3α = 3sinα - 4sin^3α.
  5. cos3α = 4cos^3α - 3cosα.
  6. tg3α = (3tgα - tg^3α) / (1-tg^2α).

Перехід від суми до твору

Враховуючи, що 2sinx*cosy = sin(x+y) + sin(x-y), спростивши цю формулу, отримуємо тотожність sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогічно sinα - sinβ = 2sin(α - β) / 2 * cos (α + β) / 2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα - cosβ = 2sin(α + β)/2 * sin(α - β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓α) = √2cos(π/4±α).

Перехід від твору до суми

Ці формули випливають з тотожностей переходу суми до твір:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Формули зниження ступеня

У цих тотожностях квадратний і кубічний ступінь синуса і косинуса можна виразити через синус і косинус першого ступеня кратного кута:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α) / 8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Універсальна підстановка

Формули універсальної тригонометричної підстановки виражають тригонометричні функції через тангенс половинного кута.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при цьому х = π + 2πn;
  • cos x = (1 - tg^2 x/2) / (1 + tg^2 x/2), де х = π + 2πn;
  • tg x = (2tgx/2) / (1 - tg^2 x/2), де х = π + 2πn;
  • ctg x = (1 - tg^2 x/2) / (2tgx/2), при цьому х = π + 2πn.

Приватні випадки

Окремі випадки найпростіших тригонометричних рівнянь наведені нижче (k - будь-яке ціле число).

Приватні для синусу:

Значення sin x Значення x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk або 5π/6 + 2πk
-1/2 -π/6 + 2πk або -5π/6 + 2πk
√2/2 π/4 + 2πk або 3π/4 + 2πk
-√2/2 -π/4 + 2πk або -3π/4 + 2πk
√3/2 π/3 + 2πk або 2π/3 + 2πk
-√3/2 -π/3 + 2πk або -2π/3 + 2πk

Приватні для косинуса:

Значення cos x Значення х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Приватні для тангенсу:

Значення tg x Значення х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Приватні для котангенсу:

Значення ctg x Значення x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теореми

Теорема синусів

Існує два варіанти теореми - простий та розширений. Проста теорема синусів: a/sin α = b/sin β = c/sin γ. При цьому a, b, c — сторони трикутника, і α, β, γ — відповідно кути, що протилежать.

Розширена теорема синусів для довільного трикутника: a/sin α = b/sin β = c/sin γ = 2R. У цьому тотожності R позначає радіус кола, який вписаний заданий трикутник.

Теорема косінусів

Тотожність відображається так: a^2 = b^2 + c^2 — 2*b*c*cos α. У формулі a, b, c — сторони трикутника, і α — кут, що протилежить стороні а.

Теорема тангенсів

Формула виражає зв'язок між тангенсами двох кутів і довжиною сторін, що їм протилежні. Сторони позначені як a, b, c, а відповідні протилежні кути - α, β, γ. Формула теореми тангенсів: (a - b) / (a ​​+ b) = tg ((α - β) / 2) / tg ((α + β) / 2).

Теорема котангенсів

Зв'язує радіус вписаного в трикутник кола з довжиною його сторін. Якщо a, b, c — сторони трикутника, і А, В, С, відповідно, протилежні кути, r — радіус вписаного кола, і p — напівпериметр трикутника, справедливі такі тотожності:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладне застосування

Тригонометрія – не тільки теоретична наука, пов'язана з математичними формулами Її властивостями, теоремами та правилами користуються на практиці різні галузі людської діяльності- астрономія, повітряна та морська навігація, теорія музики, геодезія, хімія, акустика, оптика, електроніка, архітектура, економіка, машинобудування, вимірювальні роботи, комп'ютерна графіка, картографія, океанографія, та багато інших.

Синус, косинус, тангенс і котангенс - основні поняття тригонометрії, за допомогою яких математично можна виразити співвідношення між кутами та довжинами сторін у трикутнику, і знайти шукані величини через тотожності, теореми та правила.

Що таке синус, косинус, тангенс, котангенс кута допоможе зрозуміти прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, яка лежить навпроти прямого кута (у нашому прикладі це сторона (AC)); катети - це дві сторони, що залишилися \(AB \) і \(BC \) (ті, що прилягають до прямого кута), причому, якщо розглядати катети щодо кута \(BC \) , то катет \(AB \) - це прилеглий катет, а катет (BC) - протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику:

\[ \sin \beta =\dfrac(BC)(AC) \]

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику:

\[ \cos \beta =\dfrac(AB)(AC) \]

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику:

\[ tg\beta = dfrac(BC)(AB) \]

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику:

\[ ctg\beta = dfrac(AB)(BC) \]

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута (beta). За визначенням, із трикутника \(ABC \) : \(\cos \beta =\dfrac(AB)(AC)=\dfrac(4)(6)=\dfrac(2)(3) \), але ми можемо обчислити косинус кута \(\beta \) і з трикутника \(AHI \) : \(\cos \beta =\dfrac(AH)(AI)=\dfrac(6)(9)=\dfrac(2)(3) \). Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника \(ABC \), зображеного нижче на малюнку, знайдемо \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \).

\(\begin(array)(l)\sin \ \alpha =\dfrac(4)(5)=0,8\\cos \ \alpha =\dfrac(3)(5)=0,6\\ tg \ \ alpha = \ dfrac (4) (3) \ \ ctg \ \ alpha = \ dfrac (3) (4) = 0,75 \ end (array) \)

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута (beta).

Відповіді: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac(4)(3) \).

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з радіусом, рівним (1). Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (x) (у нашому прикладі, це радіус (AB)).

Кожній точці кола відповідають два числа: координата по осі (x) і координата по осі (y). А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник (ACG). Він прямокутний, оскільки \(CG\) є перпендикуляром до осі \(x\).

Чому дорівнює \(\cos \ \alpha\) з трикутника \(ACG\)? Все вірно \(\cos \ \alpha =\dfrac(AG)(AC) \). Крім того, нам відомо, що \(AC \) - це радіус одиничного кола, а значить, \(AC=1 \) . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

\(\cos \ \alpha =\dfrac(AG)(AC)=\dfrac(AG)(1)=AG \).

А чому дорівнює \(\sin \ \alpha\) з трикутника \(ACG\)? Ну звичайно, \(\sin \alpha =\dfrac(CG)(AC) \)! Підставимо значення радіусу \(AC \) в цю формулу і отримаємо:

\(\sin \alpha =\dfrac(CG)(AC)=\dfrac(CG)(1)=CG \)

Так, а можеш сказати, які координати має точка (C), що належить колу? Ну що, аж ніяк? А якщо збагнути, що \(\cos\alpha\) і \(\sin\alpha\) - це просто числа? Який координаті відповідає \(\cos\alpha\)? Ну, звичайно, координаті (x)! А якій координаті відповідає \(\sin \alpha\)? Все правильно, координаті \ (y \)! Таким чином, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \).

А чому тоді рівні \(tg \alpha\) і \(ctg \alpha\)? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що \(tg \alpha =\dfrac(\sin \alpha )(\cos \alpha )=\dfrac(y)(x) \), а \(ctg \alpha =\dfrac(\cos \alpha )(\sin \alpha )=\dfrac(x)(y) \).

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося в даному прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник \(((A)_(1))((C)_(1))G \) : кут (як прилеглий до кута \(\beta \) ). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута \(((C)_(1))((A)_(1))G=180()^\circ -\beta \ \)? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

\(\begin(array)(l)\sin \angle ((C)_(1))((A)_(1))G=\dfrac(((C)_(1))G)(( (A)_(1))((C)_(1)))=\dfrac(((C)_(1))G)(1)=((C)_(1))G=y; \\\cos \angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((A)_(1)) ((C)_(1)))=\dfrac(((A)_(1))G)(1)=((A)_(1))G=x;\\tg\angle ((C )_(1))((A)_(1))G=\dfrac(((C)_(1))G)(((A)_(1))G)=\dfrac(y)( x);\ctg\angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((C)_(1) ))G)=\dfrac(x)(y)\end(array) \)

Ну от, як бачиш, значення синуса кута так само відповідає координаті \ (y \) ; значення косинуса кута - координаті (x); а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове положення радіус-вектора - вздовж позитивного напрямку осі (x). Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оборот радіус-вектора по колу складає \(360()^\circ \) або \(2\pi \). А чи можна повернути радіус-вектор на \(390()^\circ \) або на \(-1140()^\circ \) ? Ну звісно, ​​можна! В першому випадку, \(390()^\circ =360()^\circ +30()^\circ \), таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні \(30()^\circ \) або \(\dfrac(\pi)(6) \) .

У другому випадку, \(-1140()^\circ =-360()^\circ \cdot 3-60()^\circ \), тобто радіус-вектор зробить три повні обороти і зупиниться в положенні \(-60()^\circ \) або \(-\dfrac(\pi)(3) \) .

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на \(360()^\circ \cdot m \) або \(2\pi \cdot m \) (де \(m \) - будь-яке ціле число ), відповідають тому самому положенню радіус-вектора.

Нижче малюнку зображений кут \(\beta =-60()^\circ \) . Це ж зображення відповідає куту \(-420()^\circ ,-780()^\circ ,\ 300()^\circ ,660()^\circ \)і т.д. Цей список можна продовжити до безкінечності. Усі ці кути можна записати загальною формулою \(\beta +360()^\circ \cdot m \)або \(\beta +2\pi \cdot m \) (де \(m \) – будь-яке ціле число)

\(\begin(array)(l)-420()^\circ =-60+360\cdot (-1);\-780()^\circ =-60+360\cdot (-2); \\300()^\circ =-60+360\cdot 1;\\660()^\circ =-60+360\cdot 2.\end(array) \)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

\(\begin(array)(l)\sin \ 90()^\circ =?\\\cos \ 90()^\circ =?\\\text(tg)\ 90()^\circ =? \\text(ctg)\ 90()^\circ =?\\\sin \ 180()^\circ =\sin \ \pi =?\\cos \ 180()^\circ =\cos \ \pi =?\\\text(tg)\ 180()^\circ =\text(tg)\ \pi =?\\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =?\\\sin \ 270()^\circ =?\\\cos \ 270()^\circ =?\\\text(tg)\ 270()^\circ =?\\\text (ctg)\ 270()^\circ =?\\\sin \ 360()^\circ =?\\\cos \ 360()^\circ =? \circ =?\\\text(ctg)\ 360()^\circ =?\\\sin \ 450()^\circ =?\\\cos \ 450()^\circ =?\\\text (tg)\ 450()^\circ =?\\\text(ctg)\ 450()^\circ =?\end(array) \)

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

\(\begin(array)(l)\sin \alpha =y;\\cos\alpha =x;\tg\alpha =\dfrac(y)(x);\ctg\alpha =\dfrac(x )(y).\end(array) \)

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку в \(90()^\circ =\dfrac(\pi )(2) \)відповідає точка з координатами \(\left(0;1 \right) \) , отже:

\(\sin 90()^\circ =y=1 \);

\(\cos 90()^\circ =x=0 \);

\(\text(tg)\ 90()^\circ =\dfrac(y)(x)=\dfrac(1)(0)\Rightarrow \text(tg)\ 90()^\circ \)- не існує;

\(\text(ctg)\ 90()^\circ =\dfrac(x)(y)=\dfrac(0)(1)=0 \).

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам у \(180()^\circ ,\ 270()^\circ ,\ 360()^\circ ,\ 450()^\circ (=360()^\circ +90()^\circ)\ \ )відповідають точки з координатами \(\left(-1;0 \right),\text( )\left(0;-1 \right),\text( )\left(1;0 \right),\text( )\left(0 ;1 \right) \)відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

\(\displaystyle \sin \ 180()^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180()^\circ =\cos \ \pi =-1 \)

\(\text(tg)\ 180()^\circ =\text(tg)\ \pi =\dfrac(0)(-1)=0 \)

\(\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =\dfrac(-1)(0)\Rightarrow \text(ctg)\ \pi \)- не існує

\(\sin \ 270()^\circ =-1 \)

\(\cos \ 270()^\circ =0 \)

\(\text(tg)\ 270()^\circ =\dfrac(-1)(0)\Rightarrow \text(tg)\ 270()^\circ \)- не існує

\(\text(ctg)\ 270()^\circ =\dfrac(0)(-1)=0 \)

\(\sin \ 360()^\circ =0 \)

\(\cos \ 360()^\circ =1 \)

\(\text(tg)\ 360()^\circ =\dfrac(0)(1)=0 \)

\(\text(ctg)\ 360()^\circ =\dfrac(1)(0)\Rightarrow \text(ctg)\ 2\pi \)- не існує

\(\sin \ 450()^\circ =\sin \ \left(360()^\circ +90()^\circ \right)=\sin \ 90()^\circ =1 \)

\(\cos \ 450()^\circ =\cos \ \left(360()^\circ +90()^\circ \right)=\cos \ 90()^\circ =0 \)

\(\text(tg)\ 450()^\circ =\text(tg)\ \left(360()^\circ +90()^\circ \right)=\text(tg)\ 90() ^\circ =\dfrac(1)(0)\Rightarrow \text(tg)\ 450()^\circ \)- не існує

\(\text(ctg)\ 450()^\circ =\text(ctg)\left(360()^\circ +90()^\circ \right)=\text(ctg)\ 90()^ \circ =\dfrac(0)(1)=0 \).

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

\(\left. \begin(array)(l)\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac(y)(x);\\ctg \alpha =\ dfrac(x)(y).\end(array) \right\)\text(Треба запам'ятати або вміти виводити!! \) !}

А ось значення тригонометричних функцій кутів в і \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4) \), наведених нижче у таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута ( \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4),\ 60()^\circ =\dfrac(\pi )(3) \)), а також значення тангенса кута \(30()^\circ \) . Знаючи ці \ (4 \) значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілок, тобто:

\(\begin(array)(l)\sin 30()^\circ =\cos \ 60()^\circ =\dfrac(1)(2)\ \\\sin 45()^\circ = \cos \ 45()^\circ =\dfrac(\sqrt(2))(2)\\\sin 60()^\circ =\cos \ 30()^\circ =\dfrac(\sqrt(3) ))(2)\ \end(array) \)

\(\text(tg)\ 30()^\circ \ =\dfrac(1)(\sqrt(3)) \)знаючи це можна відновити значення для \(\text(tg)\ 45()^\circ , \text(tg)\ 60()^\circ \). Чисельник "\(1 \)" буде відповідати \(\text(tg)\ 45()^\circ \ \) , а знаменник "\(\sqrt(\text(3)) \)" відповідає \(\text (tg) \ 60 () ^ \ circ \ \) . Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити та запам'ятати схему зі стрілочками, то буде достатньо пам'ятати всього \(4\) значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту? Ну, звісно, ​​можна! Давай виведемо загальну формулу для знаходження координат точки. Ось, наприклад, перед нами таке коло:

Нам дано, що точка \(K(((x)_(0));((y)_(0)))=K(3;2) \)- Центр кола. Радіус кола дорівнює \ (1,5 \). Необхідно знайти координати точки \(P \), отриманої поворотом точки \(O \) на \(\delta \) градусів.

Як видно з малюнка, координаті (x) точки (P) відповідає довжина відрізка (TP = UQ = UK + KQ). Довжина відрізка \ (UK \) відповідає координаті \ (x \) центру кола, тобто дорівнює \ (3 \). Довжину відрізка (KQ) можна виразити, використовуючи визначення косинуса:

\(\cos \ \delta =\dfrac(KQ)(KP)=\dfrac(KQ)(r)\Rightarrow KQ=r\cdot \cos \ \delta \).

Тоді маємо, що для точки \(P \) координата \(x=((x)_(0))+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \).

За тією ж логікою знаходимо значення координати для точки \(P \) . Таким чином,

\(y=((y)_(0))+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \).

Отже, у загальному виглядікоординати точок визначаються за формулами:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta \\y=((y)_(0))+r\cdot \sin \ \delta \end(array) \), де

\(((x)_(0)),((y)_(0)) \) - координати центру кола,

\ (r \) - радіус кола,

\(\delta \) - Кут повороту радіуса вектора.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, оскільки координати центру дорівнюють нулю, а радіус дорівнює одиниці:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y =((y)_(0))+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end(array) \)

У вашому браузері вимкнено Javascript.
Щоб розрахувати, необхідно дозволити елементи ActiveX!

Top