Вектор добутку векторів i j k. Векторний твір векторів заданих координатами

Перед тим, як дати поняття векторного твору, звернемося до питання орієнтації впорядкованої трійки векторів a → , b → , c → у тривимірному просторі.

Відкладемо спочатку вектори a → , b → , c → від однієї точки. Орієнтація трійки a → , b → , c → буває правою чи лівою, залежно від напрямку самого вектора c → . Від того, в яку сторону здійснюється найкоротший поворот від вектора a → до b → з кінця вектора c → буде визначено вид трійки a → b → c → .

Якщо найкоротший поворот здійснюється проти годинникової стрілки, то трійка векторів a → , b → , c → називається правою, якщо за годинниковою стрілкою – лівий.

Далі візьмемо два не коллінеарні вектори a → і b → . Відкладемо потім від точки A вектори AB → = a → і A C → b → . Побудуємо вектор A D → = c → , який одночасно перпендикулярний і A B → і A C → . Таким чином, при побудові самого вектора A D → = c → ми можемо вчинити подвійно, поставивши йому або один напрямок, або протилежний (дивіться ілюстрацію).

Упорядкована трійка векторів a → , b → , c → може бути, як ми з'ясували правою чи лівою залежно від напрямку вектора.

Зі сказаного вище можемо ввести визначення векторного твору. Дане визначеннядається для двох векторів, визначених у прямокутній системі координат тривимірного простору.

Визначення 1

Векторним твором двох векторів a → та b → називатимемо такий вектор заданий у прямокутній системі координат тривимірного простору такий, що:

  • якщо вектори a → та b → колінеарні, він буде нульовим;
  • він буде перпендикулярний вектору a → і вектору b → тобто. ∠ a → c → ∠ b → c → = π 2 ;
  • його довжина визначається за формулою: c → = a → b → sin ∠ a → , b → ;
  • трійка векторів a → , b → c → має таку ж орієнтацію, що і задана система координат.

Векторний витвірвекторів a → та b → має таке позначення: a → × b → .

Координати векторного твору

Оскільки будь-який вектор має певні координати в системі координат, можна ввести друге визначення векторного твору, яке дозволить знаходити його координати за заданими координатами векторів.

Визначення 2

У прямокутній системі координат тривимірного простору векторним твором двох векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) називають вектор c → = a → × b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → , де i → j → k → є координатними векторами.

Векторний добуток можна представити як визначник квадратної матриці третього порядку, де перший рядок є вектори орти i → , j → , k → , другий рядок містить координати вектора a → , а третій – координати вектора b → у заданій прямокутній системі координат, даний визначник матриці виглядає так: c → = a → x b → = i → j → k → a x a y z b x b y b z

Розклавши даний визначник по елементам першого рядка, отримаємо рівність: = → → → → → → → → → → → → → → → → → → → → → → → (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k →

Властивості векторного твору

Відомо, що векторний добуток у координатах представляється як визначник матриці c → = a → × b → = i → j → k → властивостей визначника матрицівиводяться такі властивості векторного твору:

  1. антикомутативність a → × b → = - b → × a →;
  2. дистрибутивність a (1) → + a (2) → × b = a (1) → × b → + a (2) → × b → або a → × b (1) → + b (2) → = a → × b (1) → + a → × b (2) → ;
  3. асоціативність λ · a → × b → = λ · a → × b → або a → × (λ · b →) = λ · a → × b → , де λ - довільне дійсне число.

Ці властивості мають нескладні докази.

Наприклад можемо довести властивість антикомутативності векторного твору.

Доказ антикомутативності

За визначенням a → x b → = i → j → k → a x a y z b x b y b z і b → x a → = i → j → k → b x b y b a x a y a z . А якщо два рядки матриці переставити місцями, то значення визначника матриці має змінюватися на протилежне, отже, a → x b → = i → j → k → a x a y z b x b y b = - i → j → та доводить антикомутативність векторного твору.

Векторний твір – приклади та рішення

Найчастіше зустрічаються три типи завдань.

У задачах першого типу зазвичай задані довжини двох векторів та кут між ними, а потрібно знайти довжину векторного твору. У цьому випадку користуються наступною формулою c → = a → b → sin ∠ a → , b → .

Приклад 1

Знайдіть довжину векторного добутку векторів a → та b → , якщо відомо a → = 3 , b → = 5 , ∠ a → , b → = π 4 .

Рішення

За допомогою визначення довжини векторного добутку векторів a → і b → розв'яжемо дану задачу: a → × b → = a → b → sin ∠ a → b → = 3 · 5 · sin π 4 = 15 2 2 .

Відповідь: 15 2 2 .

Завдання другого типу мають зв'язок із координатами векторів, у яких векторний твір, його довжина тощо. шукаються через відомі координати заданих векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) .

Для такого типу завдань можна вирішити масу варіантів завдань. Наприклад, можуть бути задані не координати векторів a → і b → , які розкладання по координатним векторам виду b → = b x · i → + b y · j → + b z · k → і c → = a → ? вектори a → та b → можуть бути задані координатами точок їх початку та кінця.

Розглянемо такі приклади.

Приклад 2

У прямокутній системі координат задані два вектори a → = (2; 1; - 3), b → = (0; - 1; 1). Знайдіть їхній векторний твір.

Рішення

За другим визначенням знайдемо векторний добуток двох векторів у заданих координатах: a → x b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → = = (1 · 1 - (- 3) · (- 1)) · i → + ((- 3) · 0 - 2 · 1) · j → + (2 · (- 1) - 1 · 0) · k → = = - 2 i → - 2 j → - 2 k → .

Якщо записати векторний добуток через визначник матриці, то рішення даного прикладувиглядає так: a → x b → = i → j → k → a x a y z b x b y b z = i → j → k → 2 1 - 3 0 - 1 1 = - 2 i → - 2 j → - 2 k → .

Відповідь: a → × b → = - 2 i → - 2 j → - 2 k → .

Приклад 3

Знайдіть довжину векторного добутку векторів i → - j → та i → + j → + k → , де i → , j → , k → - орти прямокутної декартової системи координат.

Рішення

Для початку знайдемо координати заданого векторного твору i → - j → × i → + j → + k → у цій прямокутній системі координат.

Відомо, що вектори i → - j → і i → + j → + k → мають координати (1; - 1; 0) і (1; 1; 1) відповідно. Знайдемо довжину векторного твору за допомогою визначника матриці, тоді маємо i → - j → × i → + j → + k → = i → j → k → 1 - 1 0 1 1 1 = - i → - j → + 2 k → .

Отже, векторний твір i → - j → × i → + j → + k → має координати (- 1; - 1; 2) у заданій системі координат.

Довжину векторного твору знайдемо за формулою (див. розділ довжини вектора): i → - j → × i → + j → + k → = - 1 2 + - 1 2 + 2 2 = 6 .

Відповідь: i → -j → × i → + j → + k → = 6 . .

Приклад 4

У прямокутній декартовій системі координат задані координати трьох точок A (1, 0, 1), B (0, 2, 3), C (1, 4, 2). Знайдіть якийсь вектор, перпендикулярний A B → і A C → одночасно.

Рішення

Вектори A B → і A C → мають наступні координати (-1; 2; 2) і (0; 4; 1) відповідно. Знайшовши векторний добуток векторів A B → і A C → , очевидно, що він є перпендикулярним вектором за визначенням і до A B → і до A C →, тобто є рішенням нашої задачі. Знайдемо його A B → A C → = i → j → k → - 1 2 2 0 4 1 = - 6 i → + j → - 4 k → .

Відповідь: - 6 i → + j → - 4 k → . - один із перпендикулярних векторів.

Завдання третього типу орієнтовані використання властивостей векторного добутку векторів. Після застосування яких будемо отримувати рішення заданого завдання.

Приклад 5

Вектори a → та b → перпендикулярні та їх довжини рівні відповідно 3 та 4 . Знайдіть довжину векторного твору 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → * a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → .

Рішення

За властивістю дистрибутивності векторного твору ми можемо записати 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b →

За якістю асоціативності винесемо числові коефіцієнти за знак векторних творів в останньому виразі: 3 · a → × a → + 3 · a → = 3 · a → × a → + 3 · (-2) · a → × b → + (- 1) · b → × a → + (- 1) · (- 2) · b → × b → = = 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b →

Векторні твори a → × a → і b → × b → рівні 0, оскільки a → × a → = a → · a → · sin 0 = 0 і b → × b → = b → 0 , тоді 3 · a → ? .

З антикомутативності векторного твору випливає - 6 · a → × b → - b → × a → = - 6 · a → × b → - (- 1) · a → × b → = - 5 · a → × b → . .

Скориставшись властивостями векторного твору, отримуємо рівність 3 · a → - b → × a → - 2 · b → = = - 5 · a → × b → .

За умовами вектори a → та b → перпендикулярні, тобто кут між ними дорівнює π 2 . Тепер залишається лише підставити знайдені значення у відповідні формули: 3 · a → - b → ? → · sin (a → , b →) = 5 · 3 · 4 · sin π 2 = 60 .

Відповідь: 3 · a → - b → × a → - 2 · b → = 60 .

Довжина векторного добутку векторів з орпеділення дорівнює a → × b → = a → b → sin ∠ a → , b → . Оскільки вже відомо (зі шкільного курсу), площа трикутника дорівнює половині добутку довжин двох сторін помножене на синус кута між цими сторонами. Отже, довжина векторного добутку дорівнює площі паралелограма - подвоєного трикутника, а саме добутку сторін у вигляді векторів a → і b → відкладені від однієї точки на синус кута між ними sin ∠ a → , b → .

Це і є геометричне значення векторного твору.

Фізичний зміст векторного твору

У механіці, одному з розділів фізики завдяки векторному твору можна визначити момент сили щодо точки простору.

Визначення 3

Під моментом сили F → ​​, прикладеної до точки B , щодо точки A розумітимемо наступний векторний твір A B → × F → .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Даний онлайн калькуляторобчислює векторний добуток векторів. Надається докладне рішення. Для обчислення векторного добутку векторів введіть координати векторів у комірки та натискайте на кнопку "Обчислити."

×

Попередження

Очистити всі комірки?

Закрити Очистити

Інструкція щодо введення даних.Числа вводяться як цілих чисел (приклади: 487, 5, -7623 тощо.), десяткових чисел (напр. 67., 102.54 тощо.) чи дробів. Дроб треба набирати у вигляді a/b, де a і b (b>0) цілі або десяткові числа. Приклади 45/5, 6.6/76.4, -7/6.7 тощо.

Векторний твір векторів

Перш ніж перейти до визначення векторного твору векторів, розглянемо поняття впорядкована трійка векторів, ліва трійка векторів, права трійка векторів.

Визначення 1. Три вектори називаються упорядкованої трійкою(або трійкою ), якщо зазначено, який із цих векторів перший, який другий та який третій.

Запис cba- означає - першим є вектор c, другим є вектор bі третім є вектор a.

Визначення 2. Трійка некомпланарних векторів abcназивається правою (лівою ), якщо при приведенні до загального початку, ці вектори розташовуються так, як розташовані відповідно великий, незігнутий вказівний і середній пальціправої (лівої) руки.

Визначення 2 можна формулювати і інакше.

Визначення 2". Трійка некомпланарних векторів abcназивається правою (лівою), якщо при приведенні до загального початку, вектор cрозташовується по той бік від площини, що визначається векторами aі b, звідки найкоротший поворот від aдо bвідбувається проти годинникової стрілки (за годинниковою стрілкою).

Трійка векторів abc, зображена на рис. 1 є правою, а трійка abcзображена на рис. 2 є лівою.

Якщо дві трійки векторів є правими чи лівими, кажуть, що вони однієї орієнтації. Інакше кажуть, що вони є протилежною орієнтацією.

Визначення 3. Декартова або афінна система координат називається правою (лівою), якщо три базові вектори утворюють праву (ліву) трійку.

Для певності, надалі ми розглядатимемо лише праві системи координат.

Визначення 4. Векторним творомвектора aна вектор bназивається вектор з, що позначається символом c=[ab] (або c=[a,b], або c=a×b) і задовольняє наступним трьом вимогам:

  • довжина вектора здорівнює добутку довжин векторів aі bна синус кута φ між ними:
  • |c|=|[ab]|=|a||b|sinφ; (1)
  • вектор зортогональний до кожного з векторів aі b;
  • вектор cспрямований так, що трійка abcє правою.

Векторний добуток векторів має такі властивості:

  • [ab]=−[ba] (антиперестановністьспівмножників);
  • [(λa)b]=λ [ab] (сполучністьщодо числового множника);
  • [(a+b)c]=[ac]+[bc] (розподільністьщодо суми векторів);
  • [aa]=0 для будь-якого вектора a.

Геометричні властивості векторного твору.

Теорема 1. Для колінеарності двох векторів необхідна і досить рівність нуля їхнього векторного твору.

Доведення. Необхідність. Нехай вектори aі bколінеарні. Тоді кут між ними 0 або 180° sinφ=sin180=sin 0 = 0. Отже, враховуючи вираз (1), довжина вектора cдорівнює нулю. Тоді cнульовий вектор.

Достатність. Нехай векторний добуток векторів aі bнавно нулю: [ ab]=0. Доведемо, що вектори aі bколінеарні. Якщо хоча б один із векторів aі bнульовий, то ці вектори колінеарні (бо нульовий вектор має невизначений напрямок і його можна вважати колінеарним будь-якому вектору).

Якщо ж обидва вектори aі bненульові, то | a|>0, |b|>0. Тоді з [ ab]=0 і з (1) випливає, що sinφ=0. Отже вектори aі bколінеарні.

Теорему доведено.

Теорема 2. Довжина (модуль) векторного твору ab] дорівнює площі Sпаралелограма, побудованого на наведених до загального початку векторах aі b.

Доведення. Як відомо, площа паралелограма дорівнює добутку суміжних сторін цього паралелограма на синус кута між ними. Отже:

Тоді векторний добуток цих векторів має вигляд:

Розкриваючи визначник за елементами першого рядка, ми отримаємо розкладання вектора. a×bпо базису i, j, k, Яке еквівалентно формулі (3).

Доказ теореми 3. Складемо всі можливі пари з базових векторів i, j, kі порахуємо їхній векторний твір. Потрібно враховувати, що базисні вектори взаємно ортогональні, утворюють праву трійку і мають одиничну довжину (іншими словами можна припускати, що i={1, 0, 0}, j={0, 1, 0}, k= (0, 0, 1)). Тоді маємо:

З останньої рівності та співвідношень (4), отримаємо:

Складемо 3×3 матрицю, перший рядок якої базисні вектори i, j, k,а інші рядки заповнені елементами векторів aі b:

Таким чином, результатом векторного твору векторів aі bбуде вектор:

.

Приклад 2. Знайти векторний добуток векторів [ ab], де вектор aпредставлений двома точками. Початкова точка вектора: , кінцева точка вектор a: , вектор bмає вигляд .

Розв'язання. Перемістимо перший вектор на початок координат. Для цього віднімемо з відповідних координат кінцевої точки координати початкової точки:

Обчислимо визначник цієї матриці, розклавши її по першому рядку. Результатом цих обчислень отримаємо векторний добуток векторів aі b.

Векторний витвір- це псевдовектор, перпендикулярний до площини, побудованої по двох співмножниках, що є результатом бінарної операції «векторне множення» над векторами в тривимірному Евклідовому просторі. Векторний твір не має властивостей комутативності та асоціативності (є антикомутативним) і, на відміну від скалярного твору векторів, є вектором. Широко використовується в багатьох технічних та фізичних додатках. Наприклад, момент імпульсу і сила Лоренца математично записуються як векторного твори. Векторний добуток корисний для «вимірювання» перпендикулярності векторів - модуль векторного добутку двох векторів дорівнює добутку їх модулів, якщо вони перпендикулярні, і зменшується до нуля, якщо вектори паралельні або антипаралельні.

Визначити векторний твір можна по-різному, і теоретично, у просторі будь-якої розмірності n можна обчислити твір n-1 векторів, отримавши у своїй єдиний вектор, перпендикулярний до них всім. Але якщо твір обмежити нетривіальними бінарними творами з векторними результатами, то традиційний векторний твір визначено лише у тривимірному та семимірному просторах. Результат векторного твору, як і скалярного, залежить від метрики Евклідова простору.

На відміну від формули для обчислення за координатами векторів скалярного твору в тривимірній прямокутній системі координат, формула для векторного твору залежить від орієнтації прямокутної системи координат або інакше її «хіральності».

Визначення:
Векторним добутком вектора a вектор b у просторі R 3 називається вектор c , що задовольняє наступним вимогам:
довжина вектора c дорівнює добутку довжин векторів a і b на синус кута між ними:
|c|=|a||b|sin φ;
вектор c ортогональний кожному з векторів a і b;
вектор c спрямований так, що трійка векторів abc є правою;
у разі простору R7 потрібна асоціативність трійки векторів a, b, c.
Позначення:
c===a × b


Мал. 1. Площа паралелограма дорівнює модулю векторного твору

Геометричні властивості векторного твору:
Необхідною та достатньою умовою колінеарності двох ненульових векторів є рівність нуля їхнього векторного твору.

Модуль векторного твору дорівнює площі Sпаралелограма, побудованого на приведених до загального початку векторах aі b(Див. рис.1).

Якщо e- одиничний вектор, ортогональний вектор aі bі вибраний так, що трійка a,b,e- права, а S- площа паралелограма, побудованого на них (наведених до загального початку), то для векторного твору справедлива формула:
=S e


Рис.2. Об'єм паралелепіпеда при використанні векторного та скалярного добутку векторів; пунктирні лініїпоказують проекції вектора c на a × b та вектора a на b × c, першим кроком є ​​знаходження скалярних творів

Якщо c- якийсь вектор, π - будь-яка площина, що містить цей вектор, e- одиничний вектор, що лежить у площині π та ортогональний до c,g- одиничний вектор, ортогональний до площини π і спрямований так, що трійка векторів ecgє правою, то для будь-кого, хто лежить у площині π вектора aсправедлива формула:
=Pr e a |c|g
де Pr e a векторна проекція e на a
|c|-модуль вектора з

При використанні векторного та скалярного творів можна вирахувати обсяг паралелепіпеда, побудованого на приведених до загального початку векторах a, bі c. Такий добуток трьох векторів називається змішаним.
V=|a (b×c)|
На малюнку показано, що цей обсяг може бути знайдений двома способами: геометричний результат зберігається навіть при заміні «скалярного» та «векторного» творів місцями:
V=a×b c=a b×c

Величина векторного твору залежить від синуса кута між початковими векторами, тому векторний твір може сприйматися як ступінь перпендикулярності векторів так само, як і скалярний твір може розглядатися як ступінь паралельності. Векторний добуток двох одиничних векторів дорівнює 1 (поодинокому вектору), якщо початкові вектори перпендикулярні, і дорівнює 0 (нульовому вектору), якщо вектори паралельні або антипаралельні.

Вираз для векторного твору в декартових координатах
Якщо два вектори aі bвизначені своїми прямокутними декартовими координатами, а точніше - представлені в ортонормованому базисі
a = (a x, a y, a z)
b = (b x, b y, b z)
а система координат права, то їхній векторний твір має вигляд
=(a y b z -a z b y ,a z b x -a x b z ,a x b y -a y b x)
Для запам'ятовування цієї формули:
i = ∑ε ijk a j b k
де ε ijk- символ Леві-Чівіти.

На цьому уроці ми розглянемо ще дві операції з векторами: векторний добуток векторіві змішаний твір векторів (відразу посилання, кому потрібне саме воно). Нічого страшного, так іноді буває, що для повного щастя, крім скалярного твору векторів, Потрібно ще і ще. Така ось векторна наркоманія. Може скластися враження, що ми залазимо в нетрі аналітичної геометрії. Це не так. У розділі вищої математики взагалі мало дров, хіба що на Буратіно вистачить. Насправді матеріал дуже поширений і простий - навряд чи складніше, ніж те саме скалярний добуток, навіть типових завдань буде менше. Головне в аналітичній геометрії, як багато хто переконається чи вже переконався, НЕ ПОМИЛЯТИСЯ У ВИЧИСЛЕННЯХ. Повторюйте як заклинання, і буде вам щастя =)

Якщо вектори виблискують десь далеко, як блискавки на горизонті, не біда, почніть з уроку Вектори для чайників, щоб відновити або знов придбати базові знання про вектори. Більше підготовлені читачі можуть знайомитися з інформацією вибірково, я постарався зібрати максимально повну колекцію прикладів, які часто зустрічаються в практичні роботи

Чим вас одразу порадувати? Коли я був маленьким, то умів жонглювати двома і навіть трьома кульками. Спритно виходило. Зараз жонглювати взагалі не доведеться, оскільки ми розглядатимемо тільки просторові вектори, а плоскі вектори із двома координатами залишаться за бортом. Чому? Такими вже народилися дані дії – векторний та змішаний твір векторів визначено та працюють у тривимірному просторі. Вже простіше!

У цій операції, так само, як і в скалярному творі, беруть участь два вектори. Нехай це будуть нетлінні букви.

Сама дія позначаєтьсянаступним чином: . Існують й інші варіанти, але я звик позначати векторний твір векторів саме так, у квадратних дужках із хрестиком.

І відразу питання: якщо в скалярному творі векторівберуть участь два вектори, і тут теж множаться два вектори, тоді в чому різниця? Явна різниця, перш за все, в РЕЗУЛЬТАТІ:

Результатом скалярного твору векторів є ЧИСЛО:

Результатом векторного твору векторів є ВЕКТОР: , тобто множимо вектори і знову отримуємо вектор. Закритий клуб. Власне, звідси й назва операції. У різній навчальної літературипозначення теж можуть змінюватись, я використовуватиму букву .

Визначення векторного твору

Спочатку буде визначення з картинкою, потім коментарі.

Визначення: Векторним твором неколінеарнихвекторів, взятих у даному порядку, називається ВЕКТОР , довжинаякого чисельно дорівнює площі паралелограмапобудованого на даних векторах; вектор ортогональний векторів, і спрямований так, що базис має праву орієнтацію:

Розбираємо визначення по кісточках, тут багато цікавого!

Отже, можна виділити такі суттєві моменти:

1) Вихідні вектори, позначені червоними стрілками, за визначенням не колінеарні. Випадок колінеарних векторів буде доречно розглянути пізніше.

2) Вектори взяті у строго певному порядку : – "а" множиться на "бе", а чи не «бе» на «а». Результатом множення векторівє ВЕКТОР, який позначений синім кольором. Якщо вектори помножити у зворотному порядку, отримаємо рівний за довжиною і протилежний за напрямом вектор (малиновий колір). Тобто справедливо рівність .

3) Тепер познайомимося із геометричним змістом векторного твору. Це дуже важливий пункт! ДОВжина синього вектора (а, отже, і малинового вектора) чисельно дорівнює ПЛОЩІ паралелограма, побудованого на векторах. На малюнку цей паралелограм заштрихований чорним кольором.

Примітка : креслення є схематичним, і, природно, номінальна довжина векторного твору не дорівнює площі паралелограма.

Згадуємо одну з геометричних формул: площа паралелограма дорівнює добутку суміжних сторін на синус кута між ними. Тому, виходячи із сказаного вище, справедлива формула обчислення ДОВЖИНИ векторного твору:

Підкреслюю, що у формулі йдеться про ДОВЖИНУ вектора, а не про сам вектор. Який практичний зміст? А сенс такий, що у завданнях аналітичної геометрії площу паралелограма часто знаходять через поняття векторного твору:

Отримаємо другу важливу формулу. Діагональ паралелограма (червоний пунктир) ділить його на два рівні трикутники. Отже, площу трикутника, побудованого на векторах (червоне штрихування), можна знайти за формулою:

4) Не менше важливий фактполягає в тому, що вектор ортогональний векторам , тобто . Зрозуміло, протилежно спрямований вектор (малинова стрілка) теж ортогональний вихідним векторам.

5) Вектор спрямований так, що базисмає правуорієнтацію. На уроці про переході до нового базисуя досить докладно розповів про орієнтації площиниі зараз ми розберемося, що таке орієнтація простору. Поясняти буду на ваших пальцях правої руки. Подумки поєднайте вказівний палець з вектором і середній палецьз вектором. Безіменний палець та мізинецьпритисніть до долоні. В результаті великий палець- Векторний твір буде дивитися вгору. Це і є правоорієнтований базис (на малюнку саме він). Тепер поміняйте вектори ( вказівний та середній пальці) місцями, в результаті великий палець розгорнеться, і векторний твір уже дивитиметься вниз. Це також правоорієнтований базис. Можливо, у вас виникло питання: а який базис має ліву орієнтацію? "Привласніть" тим же пальцям лівої рукивектори , і отримайте лівий базис і ліву орієнтацію простору (у цьому випадку великий палець розташується у напрямку нижнього вектора). Образно кажучи, ці базиси «закручують» або орієнтують простір у різні боки. І це поняття не слід вважати чимось надуманим чи абстрактним – так, наприклад, орієнтацію простору змінює звичайнісіньке дзеркало, і якщо «витягти відбитий об'єкт із дзеркалля», то його в загальному випадку не вдасться поєднати з «оригіналом». До речі, піднесіть до дзеркала три пальці та проаналізуйте відображення;-)

…як все-таки добре, що ви тепер знаєте про право- та лівоорієнтованихбазисах, бо страшні висловлювання деяких лекторів про зміну орієнтації =)

Векторний твір колінеарних векторів

Визначення докладно розібрано, залишилося з'ясувати, що відбувається, коли колінеарні вектори. Якщо вектори колінеарні, їх можна розмістити на одній прямий і наш паралелограм теж «складається» в одну пряму. Площа такого, як кажуть математики, виродженогоПаралелограма дорівнює нулю. Це ж випливає і з формули - синус нуля або 180 градусів дорівнює нулю, а значить, і площа нульова

Таким чином, якщо , то і . Зверніть увагу, що сам вектор твір дорівнює нульовому вектору, але на практиці цим часто нехтують і пишуть, що він також дорівнює нулю.

Окремий випадок- Векторний твір вектора на самого себе:

За допомогою векторного твору можна перевіряти колінеарність тривимірних векторів, і це завдання серед інших ми теж розберемо.

Для вирішення практичних прикладів може знадобитися тригонометрична таблиця, щоб знаходити значення синусів.

Ну що ж, розпалюємо вогонь:

Приклад 1

а) Знайти довжину векторного твору векторів, якщо

б) Знайти площу паралелограма, побудованого на векторах, якщо

Рішення: Ні, це не друкарська помилка, вихідні дані в пунктах умови я навмисно зробив однаковими. Тому що оформлення рішень відрізнятиметься!

а) За умовою потрібно знайти довжинувекторні (векторні твори). За відповідною формулою:

Відповідь:

Якщо питалося про довжину, то відповіді вказуємо розмірність – одиниці.

б) За умовою потрібно знайти площапаралелограма, побудованого на векторах. Площа даного паралелограма чисельно дорівнює довжині векторного добутку:

Відповідь:

Зверніть увагу, що у відповіді про векторний твір не йдеться взагалі, нас запитували про площі фігуривідповідно розмірність – квадратні одиниці.

Завжди дивимося, ЩО потрібно знайти за умовою, і виходячи з цього формулюємо чіткийвідповідь. Може здатися буквоїдством, але буквоїдів серед викладачів вистачає, і завдання з добрими шансами повернеться на доопрацювання. Хоча це не особливо натягнута причіпка – якщо відповідь некоректна, то складається враження, що людина не розуміється на простих речах і/або не вникла в суть завдання. Цей момент завжди потрібно тримати на контролі, вирішуючи будь-яке завдання з вищої математики та й з інших предметів теж.

Куди поділася велика буква «ен»? В принципі, її можна було додатково приліпити до рішення, але з метою скоротити запис, я цього не зробив. Сподіваюся, всім зрозуміло, що і це позначення одного і того ж.

Популярний приклад для самостійного вирішення:

Приклад 2

Знайти площу трикутника, побудованого на векторах , якщо

Формула знаходження площі трикутника через векторний добуток дана в коментарях до визначення. Рішення та відповідь наприкінці уроку.

На практиці завдання справді дуже поширене, трикутниками взагалі можуть закатувати.

Для вирішення інших завдань нам знадобляться:

Властивості векторного твору векторів

Деякі властивості векторного твору ми вже розглянули, проте я їх включу до цього списку.

Для довільних векторів та довільного числа справедливі такі властивості:

1) В інших джерелах інформації цей пункт зазвичай не виділяють у властивостях, але він дуже важливий у практичному плані. Тож нехай буде.

2) – властивість теж розібрана вище, іноді її називають антикомутативністю. Інакше кажучи, порядок векторів має значення.

3) - сполучні або асоціативнізакони векторної праці. Константи безпроблемно виносяться за межі векторного твору. Справді, чого їм робити?

4) - розподільні або дистрибутивнізакони векторної праці. З розкриттям дужок також немає проблем.

Як демонстрацію розглянемо коротенький приклад:

Приклад 3

Знайти , якщо

Рішення:За умовою знову потрібно знайти довжину векторного твору. Розпишемо нашу мініатюру:

(1) Згідно з асоціативними законами, виносимо константи за межі векторного твору.

(2) Виносимо константу межі модуля, у своїй модуль «з'їдає» знак «мінус». Довжина ж може бути негативною.

(3) Подальше зрозуміло.

Відповідь:

Пора підкинути дров у вогонь:

Приклад 4

Обчислити площу трикутника, побудованого на векторах , якщо

Рішення: Площа трикутника знайдемо за формулою . Загвоздка у тому, що вектори «це» і «де» самі представлені як сум векторів. Алгоритм тут стандартний і чимось нагадує приклади №3 та 4 уроку Скалярний добуток векторів. Рішення для ясності розіб'ємо на три етапи:

1) На першому кроці висловимо векторний твір через векторний твір, по суті, виразимо вектор через вектор. Про довжини поки що ні слова!

(1) Підставляємо вирази векторів.

(2) Використовуючи дистрибутивні закони, розкриваємо дужки за правилом множення багаточленів.

(3) Використовуючи асоціативні закони, виносимо всі константи за межі векторних творів. При малому досвіді дії 2 і 3 можна виконувати одночасно.

(4) Перший і останній доданок дорівнює нулю (нульовому вектору) завдяки приємній властивості. У другому доданку використовуємо властивість антикомутативності векторного твору:

(5) Наводимо подібні доданки.

В результаті вектор виявився через вектор, чого і потрібно досягти:

2) На другому етапі знайдемо довжину необхідного нам векторного твору. Ця дія нагадує Приклад 3:

3) Знайдемо площу шуканого трикутника:

Етапи 2-3 рішення можна було оформити і одним рядком.

Відповідь:

Розглянуте завдання досить поширене в контрольні роботи, Ось приклад для самостійного рішення:

Приклад 5

Знайти , якщо

Коротке рішення та відповідь наприкінці уроку. Подивимося, наскільки ви були уважні щодо попередніх прикладів;-)

Векторний твір векторів у координатах

, заданих в ортонормованому базисі , виражається формулою:

Формула і справді простецька: у верхній рядок визначника записуємо координатні вектори, у другий і третій рядки «укладаємо» координати векторів, причому вкладаємо у строгому порядку- Спершу координати вектора "ве", потім координати вектора "дубль-ве". Якщо вектори потрібно помножити в іншому порядку, то рядки слід поміняти місцями:

Приклад 10

Перевірити, чи колінеарні будуть наступні вектори простору:
а)
б)

Рішення: Перевірка заснована на одному із тверджень даного уроку: якщо вектори колінеарні, то їх векторний добуток дорівнює нулю (нульовому вектору): .

а) Знайдемо векторний твір:

Таким чином, вектори не колінеарні.

б) Знайдемо векторний твір:

Відповідь: а) не колінеарні, б)

Ось, мабуть, і всі основні відомості про векторний добуток векторів.

Даний розділ буде не дуже великим, оскільки завдань, де використовується змішане твір векторів, небагато. Фактично все впиратиметься у визначення, геометричний зміст і пару робочих формул.

Змішаний твір векторів – це твір трьохвекторів:

Ось так вони вишикувалися паровозиком і чекають, не дочекаються, коли їх обчислять.

Спочатку знову визначення та картинка:

Визначення: Змішаним твором некомпланарнихвекторів, взятих у даному порядку, називається об'єм паралелепіпеда, побудованого на даних векторах, з знаком «+», якщо базис правий, і знаком «–», якщо базис лівий.

Виконаємо малюнок. Невидимі нам лінії прокреслені пунктиром:

Поринаємо у визначення:

2) Вектори взяті у певному порядку, тобто перестановка векторів у творі, як ви здогадуєтеся, не минає без наслідків.

3) Перед тим, як прокоментувати геометричний зміст, зазначу очевидний факт: змішаний добуток векторів є ЧИСЛОМ: . У навчальній літературі оформлення може бути дещо іншим, я звик позначати змішане твір через , а результат обчислень літерою «пе».

За визначенням змішаний твір – це обсяг паралелепіпеда, побудованого на векторах (фігура прокреслена червоними векторами та лініями чорного кольору). Тобто число дорівнює обсягу даного паралелепіпеда.

Примітка : креслення є схематичним.

4) Не будемо знову паритися з поняттям орієнтації базису і простору. Сенс заключної частини у тому, що до обсягу може додаватися знак мінус. Простими словами, Змішане твір може бути негативним: .

Безпосередньо з визначення слідує формула обчислення об'єму паралелепіпеда, побудованого на векторах.

Кут між векторами

Для того, щоб ми могли ввести поняття векторного твору двох векторів, потрібно спочатку розібратися з таким поняттям, як кут між цими векторами.

Нехай нам дано два вектори $\overline(α)$ і $\overline(β)$. Візьмемо в просторі якусь точку $O$ і відкладемо від неї вектори $\overline(α)=\overline(OA)$ і $\overline(β)=\overline(OB)$, тоді кут $AOB$ буде називатися кутом між цими векторами (рис. 1).

Позначення: $∠(\overline(α),\overline(β))$

Поняття векторного твору векторів та формула знаходження

Визначення 1

Векторним твором двох векторів називається вектор, перпендикулярний обом даним векторам, і його довжина дорівнюватиме добутку довжин цих векторів з синусом кута між даними векторами, а також цей вектор з двома початковими мають ту ж орієнтацію, як і декартова система координат.

Позначення: $ overline (α) x overline (β) $.

Математично це виглядає так:

  1. $|\overline(α)х\overline(β)|=|\overline(α)||\overline(β)|sin⁡∠(\overline(α),\overline(β))$
  2. $\overline(α)х\overline(β)⊥\overline(α)$, $\overline(α)х\overline(β)⊥\overline(β)$
  3. $(\overline(α)х\overline(β),\overline(α),\overline(β))$ і $(\overline(i),\overline(j),\overline(k))$ однаково орієнтовані (рис. 2)

Очевидно, що зовнішній добуток векторів дорівнюватиме нульовому вектору у двох випадках:

  1. Якщо довжина одного або обох векторів дорівнює нулю.
  2. Якщо кут між цими векторами дорівнюватиме $180^\circ$ або $0^\circ$ (оскільки синус дорівнює нулю).

Щоб наочно побачити, як векторний добуток векторів, розглянемо такі приклади рішення.

Приклад 1

Знайти довжину вектора $\overline(δ)$, який буде результатом векторного твору векторів, з координатами $\overline(α)=(0,4,0)$ і $\overline(β)=(3,0,0 ) $.

Рішення.

Зобразимо ці вектори в координатному декартовому просторі (рис. 3):

Малюнок 3. Вектори в координатному декартовому просторі. Автор24 - інтернет-біржа студентських робіт

Бачимо, ці вектори лежать на осях $Ox$ і $Oy$, відповідно. Отже, кут між ними дорівнюватиме $90^\circ$. Знайдемо довжини цих векторів:

$|\overline(α)|=\sqrt(0+16+0)=4$

$|\overline(β)|=\sqrt(9+0+0)=3$

Тоді, за визначенням 1, отримаємо модуль $|\overline(δ)|$

$|\overline(δ)|=|\overline(α)||\overline(β)|sin90^\circ=4\cdot 3\cdot 1=12$

Відповідь: $12$.

Обчислення векторного твору за координатами векторів

З визначення 1 відразу ж випливає спосіб знаходження векторного твору для двох векторів. Оскільки вектор, крім значення, має ще й напрямок, знаходити його тільки за допомогою скалярної величини неможливо. Але, крім нього, існує ще спосіб знаходження за допомогою координат даних нам векторів.

Нехай нам дані вектори $\overline(α)$ і $\overline(β)$, які матимуть координати $(α_1,α_2,α_3)$ і $(β_1,β_2,β_3)$, відповідно. Тоді вектор векторного твору (а саме його координати) можна знайти за такою формулою:

$\overline(α)х\overline(β)=\begin(vmatrix)\overline(i)&\overline(j)&\overline(k)\\α_1&α_2&α_3\\β_1&β_2&β_3\end(vmatrix)$

Інакше, розкриваючи визначник, отримаємо такі координати

$\overline(α)х\overline(β)=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

Приклад 2

Знайти вектор векторного твору колінеарних векторів $ \ overline (α) $ і $ \ overline (β) $ з координатами $ (0,3,3) $ і $ (-1,2,6) $.

Рішення.

Скористаємося формулою, наведеною вище. Отримаємо

$\overline(α)х\overline(β)=\begin(vmatrix)\overline(i)&\overline(j)&\overline(k)\\0&3&3\-1&2&6\end(vmatrix)=(18 -6)\overline(i)-(0+3)\overline(j)+(0+3)\overline(k)=12\overline(i)-3\overline(j)+3\overline(k) ) = (12,-3,3) $

Відповідь: $ (12,-3,3) $.

Властивості векторного твору векторів

Для довільних змішаних трьох векторів $\overline(α)$, $\overline(β)$ і $\overline(γ)$, а також $r∈R$ справедливі такі властивості:

Приклад 3

Знайдіть площу паралелограма, вершини якого мають координати $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ та $(3,8,0)$.

Рішення.

Спочатку зобразимо цей паралелограм у координатному просторі (рис.5):

Малюнок 5. Паралелограм у координатному просторі. Автор24 - інтернет-біржа студентських робіт

Бачимо, що дві сторони цього паралелограма побудовані за допомогою колінеарних векторів з координатами $ overline (α) = (3,0,0) $ і $ overline (β) = (0,8,0) $. Використовуючи четверту властивість, отримаємо:

$S=|\overline(α)х\overline(β)|$

Знайдемо вектор $\overline(α)х\overline(β)$:

$\overline(α)х\overline(β)=\begin(vmatrix)\overline(i)&\overline(j)&\overline(k)\3&0&0\\0&8&0\end(vmatrix)=0\overline (i)-0\overline(j)+24\overline(k)=(0,0,24)$

Отже

$S=|\overline(α)х\overline(β)|=\sqrt(0+0+24^2)=24$


Top